To increase productivity of marine propellers by raising machining efficiency, this paper presents the zigzag/spiral tool paths generation algorithm based on the arc base curve approach for three-axis machining of curved surfaces of propellers. By considering the shapes of selected cutters with different types of tool paths generated by the proposed procedure, machining efficiency can be calculated and simulated. To verify the accuracy and effectiveness of the developed approach, numerical and experimental results of machining of propeller surfaces are compared. It was proved that the machining time can be cut down up to 19% by using zigzag tool paths with a toroidal cutter. In addition, the machining knowledge revealed here can be accumulated for benefit evaluation in the manufacturing process with existing CAD/CAM systems. From the cost model, design, and process views, the overall cost savings after 5 years are investigated, and the expected benefit yield is about 45%.

This content is only available via PDF.
You do not currently have access to this content.