Uncertainty plays a critical role in engineering design as even a small amount of uncertainty could make an optimal design solution infeasible. The goal of robust optimization is to find a solution that is both optimal and insensitive to uncertainty that may exist in parameters and design variables. In this paper, a novel approach, Sequential Quadratic Programing for Robust Optimization (SQP-RO), is proposed to solve single-objective continuous nonlinear optimization problems with interval uncertainty in parameters and design variables. This new SQP-RO is developed based on a classic SQP procedure with additional calculations for constraints on objective robustness, feasibility robustness, or both. The obtained solution is locally optimal and robust. Eight numerical and engineering examples with different levels of complexity are utilized to demonstrate the applicability and efficiency of the proposed SQP-RO with the comparison to its deterministic SQP counterpart and RO approaches using genetic algorithms. The objective and/or feasibility robustness are verified via Monte Carlo simulations.

This content is only available via PDF.
You do not currently have access to this content.