In this paper, a piezoelectric leaf generator for harvesting wind energy was proposed, fabricated and tested. The leaf generator had a bimorph cantilever structure, with Su-8 as the protective supporting layer, and aligned lead zirconate titanate (PZT) nanofibers as the active layer. Interdigitated electrodes were sputtered on top of the aligned PZT nanofibers to collect the generated charge. After fabrication of the leaf generator, it was tested in a wind tunnel with different wind incident angles and wind speeds. The maximum voltage output of the leaf generator was 820 mV when the wind speed was 17 m/s. The developed leaf generator does not need further bonding to the vibration source, which make it much easier for real applications. In addition, benefited from unique material properties of the PZT nanofiber such as flexible, robust, and high piezoelectric coupling ability, the leaf generator is promising for a high efficiency wind energy harvest.

This content is only available via PDF.
You do not currently have access to this content.