A unique set of cognitive and computational challenges arise in large-scale decision making, in relation to trade-off processing and design space exploration. While several multi-attribute decision making methods exist in the current design literature, many are insufficient or not fully explored for many-attribute decision problems of six or more attributes. To address this scaling in complexity, the methodology presented in this paper strategically elicits preferences over iterative attribute subsets while leveraging principles of the Hypothetical Equivalents and Inequivalents Method (HEIM). A case study demonstrates the effectiveness of the approach in the construction of a systematic representation of preferences and the convergence to a single ‘best’ alternative.

This content is only available via PDF.
You do not currently have access to this content.