To achieve a higher storage density in a hard disk drive, the fly height of the air bearing slider, as part of the magnetic spacing, has to be minimized. At an ultra-low fly height, the intermittent / continuous contact at the head–disk interface (HDI) is unavoidable and directly affects the mechanical and magnetic performance of the hard disk drive, and is of great interest. The HDI wear has a non-linear and time-varying nature due to the change of contact force and roughness. To predict the HDI wear evolution, an iterative model of Coupled Head And Disk (CHAD) wear, is developed based on the contact mechanics. In this model, a composite transient wear coefficient is adopted and multiple phases of the wear evolution are established. A comprehensive contact stiffness is derived to characterize the contact at the HDI. The abrasive and adhesive wear is calculated based on the extended Archard’s wear law. The plastic and elastic contact areas are calculated with a 3-D sliding contact model. Based on the CHAD wear model, for the first time, the coupling between head and disk wear evolutions is thoroughly investigated. Accelerated wear tests have also been performed to verify the disk wear effect on the slider wear. A wear coefficient drop with time is observed during the tests and it is attributed to a wear mechanism shift from abrasive to adhesive wear. A shift in the type of contact from plastic to elastic accounts for the wear mechanism change.

This content is only available via PDF.
You do not currently have access to this content.