An experimental investigation is conducted to determine the flow and heat-transfer parameters of porous media with the consideration of density-variation effect of the working fluid. The permeability (K), inertial coefficient (F), and local convective heat transfer coefficient (hloc) are determined for two types of metal screens at Reynolds numbers ranging from 20 to 400. A single-blow transient technique combined with a compressible non-local-thermal-equilibrium model determines the hloc. The compressible non-local-thermal-equilibrium model is also adopted in a Levenberg-Marquardt optimization technique for deducing the K and F from measured steady-state pressure drops at different flow rates. Results show that the permeability increases with the increase of the porosity. A set of empirical correlations is obtained for calculating the Nusselt number. Results also show that, under the test condition of this study, consideration of the density-variation effect would improve the accuracy in deducing the K, F, and hloc.

This content is only available via PDF.
You do not currently have access to this content.