Metal cutting is a thermo-mechanically coupled process in which plasticity induced heating and friction play a critical role. In this paper, we outline a methodology that combines high resolution experiments with numerical simulations. The simulations were performed with a general purpose finite element code. With this code we evaluate the effects of chip-tool interface friction and rake angle on temperature and cutting force and show that results for residual stresses in the workpiece are consistent with experimental data. We hypothesize that by closely coupling simulations to fine scale spatial and temporal experimental measurements of temperature and strain fields, questions related to choice of parameters in FE simulations can be resolved. We have designed and conducted orthogonal cutting experiments to measure temperatures, using IR detectors, with a spatial resolution of 27 × 27 μm and time scale of 200 ns. Experimentally obtained temperature fields are compared with FE results. We also obtain deformation fields with a spatial resolution of 50 × 50 μm.

This content is only available via PDF.
You do not currently have access to this content.