Abstract

Polymer coatings provide an excellent corrosion barrier for Al-skinned military aircraft. However, the degradation and damage of the coatings in their service life over time leads to the initiation of corrosion damage at the substrate level. Early detection and negation of such activity can provide extensive cost savings. Several Electrochemical techniques and Non Destructive Evaluation (NDE) show promise in detecting the onset of corrosion under such coatings. Current accelerated testing of aircraft coating systems for corrosion protection relies heavily on salt spray methods. Electrochemical techniques such as Electrochemical Impedance Spectroscopy (EIS) and Electrochemical Noise Methods (ENM) provide insight into the global properties of a coating system, and both techniques are being used on a limited basis. However, there is a need to investigate corrosion events with greater spatial resolution under coatings at the metal/coating interface. Such corrosion activity may be related to coating defects and variations in the surface chemistry of the underlying metal. The Scanning Vibrating Electrode Technique (SVET) has been developed to allow the investigation of localized corrosion activity with high spatial resolution. Such activity may be associated with coating defects or galvanic coupled regions of the metal surface.

Electrochemical and NDE techniques were used to investigate the early stage of corrosion activity under protective coatings. Coatings in this investigation ranged from a simple epoxy amine to commercially used military aircraft polyurethane coatings. SVET testing of panels with intact high-resistance barrier coatings could not reveal corrosion damage under normal testing conditions because of little or no corrosion activity within the limited exposure time. Chemical, mechanical, and electrochemical means of accelerating the corrosion damage were utilized to obtain results in a reasonable time frame. Corrosion initiation and its progress under the coating were studied in detail and the results are discussed here. Complimentary high-resolution NDE techniques, such as Scanning Acoustic Microscopy (SAM) and Fan Thermography measurements were used to identify the corrosion sites. The overall objective of this investigation is to establish a correlation between the electrochemical and NDE techniques.

This content is only available via PDF.
You do not currently have access to this content.