Conventional sensors, such as proximeters and accelerometers, are add-on devices usually adding additional weights to structures and machines. Health monitoring of flexible structures by electroactive smart materials has been investigated over the years. Thin-film piezoelectric material, e.g., polyvinylidene fluoride (PVDF) polymeric material, is a lightweight and dynamic sensitive material appearing to be a perfect candidate in monitoring structure’s dynamic state and health status of flexible shell structures with complex geometries. The complexity of shell structures has thwarted the progress in studying the distributed sensing of shell structures. Linear distributed sensing of various structures have been studied, like beam, plate, cylindrical shell, conical shell, spherical shell, paraboloidal shell and toroidal shell. However, distributed sensing control of nonlinear shell structures has not been carried out rigorously. This study is to present the microscopic signals, modal voltages and distributed micro-sensing components of truncated nonlinear conical shells laminated with distributed infinitesimal piezoelectric neurons. Signal generation of distributed neuron sensors laminated on conical shells is defined first. The dynamic signal of truncated nonlinear conical shell consists of microscopic linear and nonlinear membrane strain components and linear bending strain component based on the von Karman geometric nonlinearity. Micro-signals, modal voltages and distributed sensing components of two different truncated nonlinear conical shells are investigated and their sensitivities discussed.

This content is only available via PDF.
You do not currently have access to this content.