The stress variations and stress distributions in stepped-lap adhesive joints of dissimilar adherends under impact tensile loadings were analyzed in elastic range using three-dimensional finite element method. The impact loadings were applied to the lower adherend by dropping a weight. The stress distributions in stepped-lap adhesive joints of dissimilar adherends under static tensile loadings were also analyzed using FEM. The effects of Young’s modulus of the adherends, the adhesive thickness and the number of butted steps of adherents ware examined under both impact and static loadings. As the results, The maximum value of stress σ1 increased as Young’s modulus of the adherends increased for the impact loadings. The maximum value of stress σ1 increased as the numbers of steps in the adherends increased for the static loadings. In addition, the experiments to measure the strain response of joints subjected to impact tensile loadings were carried out using strain gauges. A fairly good agreement was found between the numerical and the measured results concerning the strain responses.

1.
R.D. Adams and W.C. Wake, Structural Adhesive Joints in Engineering, Elsevier Applied Science, London (1984).
2.
Nakagawa
F.
,
Sawa
T.
,
Nakano
Y.
and
Kato
M.
,
J. Adhesion Sci. Technol.
13
,
309
323
(
1999
).
3.
Reedy
E. D.
,
Int. J. Solids Structures
.
30
,
767
777
(
1993
).
4.
Yang
C.
and
Pang
S.-S.
,
Trans. ASME, J. Eng. Mater. Technol.
,
118
,
247
255
(
1996
).
5.
Helms
J. E.
,
Yang
C.
and
Pang
S.-S.
,
Trans. ASME, J. Eng. Mater. Technol.
,
119
,
408
414
(
1997
).
6.
Helms
J. E.
,
Yang
C.
and
Pang
S.-S.
,
Trans. ASME, J. Eng. Mater. Technol.
,
121
,
374
380
(
1999
).
7.
Liu
J.
and
Sawa
T.
,
J. Adhesion Sci. Technol.
15
,
43
61
(
2001
).
8.
Liu
J.
and
Sawa
T.
,
J. Adhesion Sci. Technol.
13
,
729
749
(
1999
).
9.
Sawa
T.
,
Liu
J.
,
Nakano
Y.
and
Tanaka
J.
J. Adhesion Sci. Technol.
14
,
43
66
(
2000
).
10.
Liu
J.
and
Sawa
T.
,
J. Adhesion Sci. Technol.
14
,
67
92
(
2000
).
11.
Sancaktar
E.
and
Gomatam
R.
,
J. Adhesion Sci. Technol.
15
,
97
117
(
2001
).
12.
Zahng
S.
and
Hsia
K. J.
,
J. Appl. Mech.
,
68
,
93
100
(
2001
).
13.
Nakagawa
F.
and
Sawa
T.
,
J. Adhesion Sci. Technol.
15
,
119
135
(
2001
).
14.
T. Sawa, Y. Suzuki and S. Kido, J. Adhesion Sci Technol., in printing.
15.
Sawa
T.
,
Senou
Y.
,
Okuno
H.
and
Hagiwara
T.
,
J. Adhesion
.
59
,
1
16
(
1996
).
16.
Higuchi
I.
,
Sawa
T.
and
Okuno
H.
J. Adhesion Sci. Technol.
69
,
59
82
(
1999
).
17.
Chen
D.
and
Cheng
S.
,
Trans. ASME, J. Appl. Mech.
57
,
78
83
(
1990
).
18.
Zachary
L. W.
and
Burger
C. P.
,
Exp. Mech.
,
20
,
162
166
(
1980
).
19.
U. Karmarkar, and E. Sancaktar, 2002, “MECHANICALADHESION ANALYSIS OF MULTI-STEPPED DOUBLE SCARF JOINTS WITH VOID AND DISBOND EFFECTS,” Proc. The 2002 ASME Mechanical Engineering Congress and Exposition.
20.
Z-H. Zhong, Finite Element Procedures for Contact-Impact Problems, Oxford University Press (1993).
21.
J.O. Hallquist, User’s Manuals for DYNA3D and DYNAP (Nonlinear Dynamic Analysis of Solids in Three Dimensions), University of California, Lawrence Livermore National Laboratory, Reprint UCID-19156 (1981).
22.
J.O. Hallquist, User’s Manuals for DYNA3D and DYNAP (Nonlinear Dynamic Analysis of Solids in Three Dimensions), University of California, Lawrence Livermore National Laboratory, Reprint UCID-19156 (1981).
This content is only available via PDF.
You do not currently have access to this content.