The effect of process-induced voids on the durability of Sn-Pb and Pb-free solder interconnects in electronic products is not clearly understood. Experimental studies have provided conflicting ambiguous conclusions, showing that voids may sometimes be detrimental to reliability, but they may sometimes even increase the reliability of joints, depending on the size and location. Because of the higher level of process-induced voids in Pb-free solders, this debate is more intensified in Pb-free joints. This study presents Finite Element Analysis of the influence of voids size, location, and spacing on the durability of Pb-free solders. A three dimensional, global-local, visco-plastic FEA is conducted for a CTBAG132 assembly under thermal cycling. The displacement result of the global FEA at the top and bottom of the critical ball is used as the boundary condition in a local model which focuses on the details of a single ball of the CTBGA package under temperature cycling. Parametric study is conducted to model a solder ball with voids of different sizes, and locations. The maximum void size modeled is up to 6% of the ball volume. An energy-partitioning model for cyclic creep-fatigue damage is used to estimate the damage and monitor the trends as the size and location of voids are varied. Potential sites for maximum damage and crack initiation are identified. Strain based and energy based damage models are compared, for later verification with experimental studies in a future paper.
Skip Nav Destination
ASME 2005 International Mechanical Engineering Congress and Exposition
November 5–11, 2005
Orlando, Florida, USA
Conference Sponsors:
- Electronic and Photonic Packaging Division
ISBN:
0-7918-4217-7
PROCEEDINGS PAPER
Effect of Voids on Thermo-Mechanical Durability of Pb-Free BGA Solder Joints: Modeling and Simulation
Leila Jannesari Ladani,
Leila Jannesari Ladani
University of Maryland
Search for other works by this author on:
Abhijit Dasgupta
Abhijit Dasgupta
University of Maryland
Search for other works by this author on:
Leila Jannesari Ladani
University of Maryland
Abhijit Dasgupta
University of Maryland
Paper No:
IMECE2005-80238, pp. 57-63; 7 pages
Published Online:
February 5, 2008
Citation
Ladani, LJ, & Dasgupta, A. "Effect of Voids on Thermo-Mechanical Durability of Pb-Free BGA Solder Joints: Modeling and Simulation." Proceedings of the ASME 2005 International Mechanical Engineering Congress and Exposition. Electronic and Photonic Packaging, Electrical Systems Design and Photonics, and Nanotechnology. Orlando, Florida, USA. November 5–11, 2005. pp. 57-63. ASME. https://doi.org/10.1115/IMECE2005-80238
Download citation file:
7
Views
0
Citations
Related Proceedings Papers
Related Articles
Effect of Voids on Thermomechanical Durability of Pb-Free BGA Solder Joints: Modeling and Simulation
J. Electron. Packag (September,2007)
Thermomechanical Durability of High I/O BGA Packages
J. Electron. Packag (September,2002)
Systematic Study on Thermo-Mechanical Durability of Pb-Free Assemblies: Experiments and FE Analysis
J. Electron. Packag (December,2005)
Related Chapters
Microstructure Evolution and Physics-Based Modeling
Ultrasonic Welding of Lithium-Ion Batteries
Coupled Thermo-Mechanical Simulation
Ultrasonic Welding of Lithium-Ion Batteries
Industrially-Relevant Multiscale Modeling of Hydrogen Assisted Degradation
International Hydrogen Conference (IHC 2012): Hydrogen-Materials Interactions