Although the analogy between thermal radiation and collisionless molecular flow has been known since the experiments of Knudsen in the early 20th century, it has not been exploited for mainstream analysis of physical vapor deposition processes. With the availability of commercial finite element and computational fluid dynamics software having built-in cavity radiation solvers with features such as automatic surface definition, meshing and view factor calculation, the analysis of thermal radiation problems has become a straightforward procedure. A direct result of this is the ease with which high vacuum deposition processes can be analyzed via the radiation-molecular flow analogy. There are several advantages of using the analogy as opposed to analytical and Monte-Carlo methods which have been traditionally employed for analyzing PVD processes. These include the ease of handling complex geometries and reduced computing times due to the replacement of the probabilistic calculations in Monte Carlo simulations with a deterministic one. In this paper, we demonstrate the use of a commercial finite element software, ABAQUS, for predicting deposition profiles from planar as well as tube sources and compare them with those presented in thin-film literature. We also compare the prediction of flow rates through long tubes with those calculated analytically by Knudsen. The predictions are in good agreement with the analytical and experimental data thus establishing the validity of the method in analyzing real-life deposition and molecular flow problems. Finally, we employ ABAQUS for predicting the thickness variation in an actual thin-film deposition setup and compare the results with experimental measurements.

1.
Knudsen
M.
,
Ann. Phys.
)
28
, (
4
, pp.
75
130
,
1909
2.
von Smoluchowski
M.
,
Ann. Phys.
,
33
, pp.
1559
1559
,
1910
3.
Clausing
P.
,
Ann. Phys.
)
12
, (
5
, pp.
961
961
,
1932
4.
Wood
R. W.
,
Phil. Mag.
,
30
, pp.
300
304
,
1915
5.
Wood
R. W.
,
Phil. Mag.
,
32
, pp.
364
371
,
1916
6.
Knudsen
M.
,
Ann. Phys.
,
52
, pp.
105
105
,
1917
7.
Shiralagi
K. T.
,
Kriman
A. M.
,
Maracas
G. N.
,
J. Vac. Sci. Technol. A
,
9
(
1
), pp.
65
70
,
1991
8.
Curless
J. A.
,
J. Vac. Sci. Technol. B
,
3
(
2
), pp.
531
534
,
1985
9.
Swann
S.
,
Collett
S. A.
,
Scarlett
I. R.
,
J. Vac. Sci. Technol. A
,
8
(
3
), pp.
1299
1303
,
1990
10.
Fatima Vales Silva
M.
,
Nicholls
J. R.
,
Surface and Coatings Technology
,
142–144
, pp.
934
938
,
2001
11.
Cale
T. S.
,
Raupp
G. B.
,
J. Vac. Sci. Technol. B
,
8
(
4
), pp.
649
655
,
1990
12.
Cale
T. S.
,
Raupp
G. B.
,
J. Vac. Sci. Technol. B
,
8
(
6
), pp.
1242
1248
,
1990
13.
O’Sullivan
P. L.
,
Baumann
F. H.
,
Gilmer
G. H.
,
J. Appl. Phys.
,
88
(
7
),
4061
4068
,
2000
14.
Davis
D. H.
,
J. Appl. Phys.
,
31
(
7
),
1169
1176
,
1960
15.
Adamson
S.
,
O’Carroll
C.
,
McGilp
J. F.
,
Vacuum
,
38
(
4–5
), pp.
341
344
,
1988
16.
Adamson
S.
,
O’Carroll
C.
,
McGilp
J. F.
,
Vacuum
,
38
(
6
), pp.
463
467
,
1988
17.
Adamson
S.
,
O’Carroll
C.
,
McGilp
J. F.
,
J. Vac. Sci. Technol. B
,
7
(
3
), pp.
487
490
,
1989
18.
Lin
Z.
,
Cale
T. S.
,
Thin Solid Films
,
270
, pp.
627
631
,
1995
19.
Wickersham
C. E.
,
J. Vac. Sci. Technol. A
,
5
(
4
), pp.
1755
1758
,
1987
20.
Bird, G.A., Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford University Press, New York, 1994
21.
Popescu
L. M.
,
Computer Physics Communications
,
150
, pp.
21
30
,
2003
22.
Bielajew, A.F., “HOWFAR and HOWNEAR: Geometry Modeling for Monte Carlo Particle Transport,” National Research Council of Canada Report, PIRS-0341, 1995
23.
Fancey
K. S.
,
Surface and Coatings Technology
,
71
, pp.
16
29
,
1995
24.
Wasilewski
Z. R.
,
Aers
G. C.
,
SpringThorpe
A. J.
,
Miner
C. J.
,
J. Vac. Sci. Technol. B
,
9
(
1
), pp.
120
131
,
1991
25.
Zehe
A.
,
Ramirez
A.
,
Superficies y Vaci´o
,
11
, pp.
44
46
,
2000
26.
Bosch
S.
,
J. Vac. Sci. Technol. A
,
10
(
1
), pp.
98
104
,
1992
27.
Incropera, F.P., DeWitt, D.P., Fundamentals of Heat and Mass Transfer, 3rd Ed., John Wiley & Sons, 1990
28.
Maissel, L., Glang, R., Handbook of Thin Film Technology, McGraw-Hill, New York, 1970
29.
Grimley
R. T.
,
Wagner
L. C.
,
Castle
P. M.
,
The Journal of Physical Chemistry
,
79
(
4
), pp.
302
308
,
1975
30.
Stickney
R. E.
,
Keating
R. F.
,
Yamamoto
S.
,
Hastings
W. J.
,
J. Vac. Sci. Technol.
,
4
(
1
), pp.
10
18
,
1967
31.
Knudsen, M., Kinetic Theory of Gases: Some Modern Aspects, 3rd Ed., John Wiley & Sons, New York, 1950
32.
Ohring, M., The materials science of thin films, Academic Press, Boston, 1992
33.
Giordmaine
J. A.
,
Wang
T. C.
,
J. Appl. Phys.
,
31
, pp.
463
463
,
1960
34.
Olander
D. R.
,
Kruger
V. R.
,
J. Appl. Phys.
,
41
(
7
), pp.
2769
2776
,
1970
35.
Zugenmaier
P.
,
Z. Angew. Phys.
,
20
, pp.
184
184
,
1965
36.
Ivanov
B. S.
,
Troitskii
V. S.
,
Sov. Phys.-Tech. Phys.
,
8
, pp.
365
365
,
1963
37.
Jones
R. H.
,
Olander
D. R.
,
Kruger
V. R.
,
J. Appl. Phys.
,
40
(
11
), pp.
4641
4649
,
1969
38.
Wahlbeck
P. G.
,
Phipps
T. E.
,
J. Chem. Phys.
,
49
(
4
), pp.
1603
1608
,
1968
39.
Adams
J. Q.
,
Phipps
T. E.
,
Wahlbeck
P. G.
,
J. Chem. Phys
,
49
(
4
), pp.
1609
1616
,
1968
40.
Rugamas
F.
,
Roundy
D.
,
Mikaelian
G.
,
Vitug
G.
,
Rudner
M.
,
Shih
J.
,
Smith
D.
,
Segura
J.
,
Khakoo
M. A.
,
Meas. Sci. Technol.
,
11
, pp.
1750
1765
,
2000
41.
Shen
L. Y. L.
,
J. Vac. Sci. Technol.
,
15
(
1
), pp.
10
12
,
1978
42.
Jackson
S. C.
,
Baron
B. N.
,
Rocheleau
R. E.
,
Russell
T. W. F.
,
J. Vac. Sci. Technol. A
,
3
(
5
), pp.
1916
1920
,
1985
43.
Buckman
S. J.
,
Gulley
R. J.
,
Moghbelalhossein
M.
,
Bennett
S. J.
,
Meas. Sci. Technol.
,
4
, pp.
1143
1153
,
1993
44.
Wang
K. C.
,
Wahlbeck
P. G.
,
J. Chem. Phys
,
47
(
11
), pp.
4799
4809
,
1967
45.
Krasuski
P. T.
,
J. Vac. Sci. Technol. A
,
5
(
4
), pp.
2488
2492
,
1987
46.
Adamson
S. C.
,
McGilp
J. F.
,
Vacuum
,
36
(
4
), pp.
227
232
,
1986
47.
Sparrow
E. M.
,
Haji-Sheikh
A.
,
Phys. Fluids
,
7
(
8
), pp.
1256
1261
,
1964
48.
Steckelmacher
W.
,
Rep. Prog. Phys.
,
49
, pp.
1083, 1107
1083, 1107
,
1986
49.
Pauli, W., Pauli Lectures on Physics: Vol. 3, Thermodynamics and the Kinetic Theory of Gases, Sec.28, pg.119, MIT Press, Cambridge, MA, 1973
This content is only available via PDF.
You do not currently have access to this content.