Electronic packaging design is a process that requires optimized solutions based on multidisciplinary design tradeoffs, which usually have complicated relations among multiple design variables. Required numerical analyses such as thermal and thermo-mechanical have hampered this multidisciplinary optimization process because of their time intensive modeling and computation time. This paper presents a state-of-the-art overview of recent multidisciplinary design and optimization methodologies in electronics packaging. The reported methodologies are divided into tow groups: (1) integrated multidisciplinary CAD environment, and (2) automated design and optimization techniques. A semi-automated design environment, which includes graphical user interface, modeling, and simulation, enhances the design procedure in the first group. Fully automated design optimization methodologies are used for various design applications in the second group. In recent years, methodologies using (1) detailed numerical analysis models directly connected to optimization algorithms, (2) design of experiments (DoE), and (3) artificial neural networks (ANNs) have been proposed as new trends in this field. Advantages as well as disadvantages of these methods are discussed.

1.
Belady
C. L.
, and
Minichiello
A.
,
2003
, “
Effective Thermal Design for Electronic Systems
,”
Electronics Cooling
,
9
(
2)
, pp.
16
21
.
2.
Tummala, R., 2001, Fundamentals of Microsystems Packaging, McGraw-Hill, New York.
3.
Glover
R.
,
1996
, “
PCB Leapfrogs into System-Level Design
,”
Electronic Design
,
44
(
7)
, pp.
83
84
.
4.
Sandborn
P. A.
, and
Vertal
M.
,
1998
, “
Analyzing Packaging Trade-Offs During System Design
,”
IEEE Design & Test of Computers
,
15
(
3)
, pp.
10
19
.
5.
Lasance
C. J. M.
,
1995
, “
The Need for a Change in Thermal Design Philosophy
,”
Electronics Cooling
,
1
(
2)
, pp.
24
26
.
6.
Lindell
M.
,
Stoaks
P.
,
Carey
D.
, and
Sandborn
P.
,
1998
, “
The Role of Physical Implementation in Virtual Prototyping of Electronic Systems
,”
IEEE Trans. Comp. Packag. Technol. A
,
21
, pp.
611
616
.
7.
Zhang, G. Q., Bisschop, J., and Maessen, P., 2001, “Virtual Thermo-Mechanical Prototyping of Microelectronics Products-Towards Optimized Designing in Reliability,” Advancing Microelectronics, 28 (1).
8.
Francois-Saint-Cyr
A.
,
2005
, “
Technical Brief: Solve Thermal Issues Earlier in Updated Board Designs
,”
Electronics Cooling
,
11
(
1)
, pp.
36
38
.
9.
Fulton, R. E., 1995, “Trends in Electronic Mechanical CAD Integration,” Proc. ASME InterPACK, Maui, HI.
10.
Coulibaly, I., 1998, “METHODIC: A New CAD for Electrothermal Coupling Simulation in Power Converters,” Proc. Industrial Electronics Conference, Aachen, Germany.
11.
Sandborn, P. A., and McFall, G., 1996, “Performing Design for Environment Concurrent with Interdisciplinary Tradeoff Analysis of Electronic Systems,” Proc. ISEE-1996, Dallas, TX.
12.
Pesare
M.
,
Giorgio
A.
,
Passaro
V. M. N.
, and
Perri
A. G.
,
2000
, “
Electrothermal Modelling of GaAs MESFETs
,”
Int. J. Electronics
,
87
(
10)
, pp.
1163
1170
.
13.
Choksi, G., Immaneni, L., Karunakaran, R., Lin, Y. C., Stys, D., and Wyllie, M., 1995, “Package Design Advisor-Mechanical, Electrical and Thermal Analysis in One CAD Tool,” Proc. IEEE Electronic Components & Technology, Las Vegas, NV.
14.
Farbarik, R., Liu, X., Rossman, M., Parakh, P., Basso, T., and Brown, R., 1997, “CAD Tools for Area-Distributed I/O Pad Packaging,” Proc. IEEE MCMC ’97, Santa Cruz, CA.
15.
Blood, W., and Lai, A., 1998, “Early Analysis of Chip Scale Package Design Trade-Offs,” Proc. IEEE IC/Package Design Integration, Santa Cruz, CA.
16.
Wu, P., Chen, K., and Tzou, J., 1997, “ViperBGA: A Novel Design Approach to High Performance and High Density BGA’s,” Proc. Electron. Manufact. Technol. Symp.
17.
Wilde, J., Staiger, W., Thoben, M., Schuch, B., and Kilian, H., 1998, “Integration of Liquid Cooling Thermal and Thermomechanical Design for the Lifetime Prediction of Electrical Power Modules,” Proc. SAE Int. Congress & Exposition, Detroit, MI.
18.
Cwik, T., Katz, D. S., and Villegas, F., 2001, “Integrated Design and Simulation for Millimeter-Wave Antenna Systems,” Proc. IEEE Aerospace Conf., Big Sky, MT.
19.
Staton, D. A., 2001, “Thermal Computer Aided Design-Advancing the Revolution in Compact Motors,” Proc. Electric Machines and Drives Conf.
20.
Przekwas, A., 1999, “Integrated Multidisciplinary CAD/CAE Environment for Micro-Electro-Mechanical Systems (MEMS),” Proc. SPIE Int. Soc. Opt. Eng., Paris, France.
21.
Stout, P., Yang, H. Q., Dionne, P., Leonard, A., Tan, Z., Przekwas, A., and Krishnan, A., 1999, “CFD-ACE+MEMS. A CAD System for Simulation and Modeling of MEMS,” Proc. SPIE Int. Soc. Opt. Eng., Paris, France.
22.
Zhou, W. X., Hsiung, C. H., Fulton, R. E., Yin, X. F., Yeh, C. P., and Wyatt, K., 1997, “CAD-Based Analysis Tools for Electronic Packaging Design (a New Modeling Methodology for a Virtual Development Environment),” Proc. ASME InterPACK, Kohala Coast, HI.
23.
Zhou, W. X., 1997, “Modularized & Parametric Modeling Methodology for Concurrent Mechanical Design of Electronic Packaging,” Ph. D. thesis, Georgia Inst. of Tech., Atlanta, GA.
24.
Senturia
S. D.
,
1998
, “
CAD Challenges for Microsensors, Microactuators, and Microsystems
,”
Proc. IEEE
,
86
, pp.
1611
1626
.
25.
Courtois
B.
,
Karam
J. M.
,
Lubaszewski
M.
,
Szekely
V.
,
Rencz
M.
,
Holmann
K.
, and
Glesner
M.
,
1998
, “
CAD Tools and Foundries to Boost Microsystems Development
,”
Mater. Sci. Eng. B Solid State Adv. Technol.
,
B 51
(
1–3)
, pp.
242
253
.
26.
Juneidi, Z., Torki, K., Martinez, S., Nicolescu, G., Courtois, B., and Jerraya, A., 2001, “Global Modeling and Simulation of System-on-Chip Embedding MEMS Devices,” Proc. IEEE Int. ASIC Conf., Shanghai, China.
27.
Courtois, B., Karam, J. M., Mir, S., Lubaszewski, M., Szekely, V., Rencz, M., Hofmann, K., and Glesner, M., 1999, “Design and Test of MEMS,” Proc. IEEE Int. Conf. on VLSI Design, Goa, India.
28.
Youn, S.-K., Kwak, B., Kwon, J.-H., Chang, S.-Y., Huh, J., and Kim, E., 2002, “Efforts in Developing Design and Simulation Tools for MEMS: DS/MEMS and CA/MEMS,” Proc. SPIE Design, Test, Integration, and packaging of MEMS/MOEMS, Cannes, France.
29.
Karam, J. M., Courtois, B., Cao, A., and Hofmann, K., 1998, “Integrated Mixed-Technology Design Environment to Support Micro Electro Mechanical Systems Development,” Proc. SPIE Micromachined Devices and Components IV, Santa Clara, CA.
30.
Liateni, K., Lee, H. J., Maher, M. A., and Karam, J. M., 2000, “Moving from Analysis to Design: A MEMS CAD Tool Evolution,” Proc. SPIE Design, Test, Integration, and packaging of MEMS/MOEMS, Paris, France.
31.
Brauer, J. R., and Wallen, P., 1996, “Coupled 3D Electromagnetic, Structural, and Thermal Finite Element Analysis as Integral Components of Electronic Product Design,” Proc. IEEE WESCON/96, Anaheim, CA.
32.
Assouad, Y., Etienne, P., and Labaune, G., 1997, “Thermal/EMC Optimization of Airborne Electronic Racks,” Proc. Int. Syst. Packag Symp., San Diego, CA.
33.
Tian, X., and Palusinski, O. A., 2002, “Reliability, Thermal Analysis and Optimization Wirability Design of Multi-Layer PCB Boards,” Proc. IEEE Rel. & Maintainability Symp., Seattle, WA.
34.
Mottahed
B. D.
, and
Manoochehri
S.
,
2000
, “
Optimal Design of Electronic System Utilizing an Integrated Multidisciplinary Process
,”
IEEE Trans. Adv. Packag.
,
23
, pp.
699
707
.
35.
Chen
R.
,
Canales
F.
,
Yang
B.
, and
van Wyk
J. D.
,
2002
, “
Volumetric Optimal Design of Passive Integrated Power Electronic Module (IPEM) for Distributed Power System (DPS) Front-End DC/DC Converter
,”
Conf. Record IEEE IAS
,
3
, pp.
1758
1765
.
36.
Larouci, C., Ferrieux, J. P., Gerbaud, L., Roudet, J., and Keradec, J. P., 2002, “Volume Optimization of a PFC Flyback Structure under Electromagnetic Compatibility, Loss and Temperature Constraints,” Proc. IEEE Power Electron. Specialists Conf., Cairns, Australia.
37.
Blaabjerg
F.
, and
Pedersen
J. K.
,
1997
, “
Optimized Design of a Complete Three-Phase PWM-VS Inverter
,”
IEEE Trans. Power Electron.
,
12
(
3)
, pp.
567
577
.
38.
Wagner, G. R., 2000, “Optimization of the Arcticooler for Lowest Thermal Resistance in a Minimum Volume,” Proc. ITHERM, Las Vegas, NV.
39.
Lo`h, C. K., Nelson, D., and Chou, D. J., 2001, “Optimization of the Fan-Heat Sink Systems in Portable Electronics Environment,” Proc. SPIE HD Int. Conf. on High-Density Interconnect and Systems Packag., Santa Clara, CA.
40.
Zhang, W., Lee, F. C., and Chen, D. Y., 2000, “Integrated EMI/Thermal Design for Switching Power Supplies,” Proc. Power Electron. Specialists Conf.
41.
Rieh
J.-S.
,
Greenberg
D.
,
Liu
Q.
,
Joseph
A. J.
,
Freeman
G.
, and
Ahlgren
D. C.
,
2005
, “
Structure Optimization of Trench-Isolated SiGe HBTs for Simultaneous Improvements in Thermal and Electrical Performances
,”
IEEE Trans. Electron Devices
,
52
(
12)
, pp.
2744
2752
.
42.
Li, P., Deng, Y., and Pileggi, L. T., 2005, “Temperature-Dependent Optimization of Cache Leakage Power Dissipation,” Proc. Int. Conf. Computer Design
43.
Chen, S.-C., and Culpepper, M. L., 2005, “Design and Optimization of Thermomechanical Actuator Via Contour Shaping,” Proc. IEEE Int. Conf. on Micro Electro Mechanical Systems
44.
Chen, J. Z., Wu, Y., Gence, C., Boroyevich, D., and Bohn, J. H., 2001, “Integrated Electrical and Thermal Analysis of Integrated Power Electronics Modules Using iSIGHT,” Proc. IEEE APEC, Anaheim, CA.
45.
Stoyanov, S., Bailey, C., Lu, H., and Cross, M., 2001, “Solder Joint Reliability Optimization,” Proc. APACK, Singapore.
46.
Stoyanov, S., Bailey, C., Lu, H., and Cross, M. 2002, “Integrated Computational Mechanics and Optimization for Design of Electronic Components,” Optimization in Industry, Parmee, I. C. and Hajela, P., eds., Springer-Verlag, London, pp. 57–70.
47.
Hadin
H.
, and
Suwa
T.
,
2005
, “
A Multidisciplinary Design and Optimization Methodology for Ball Grid Array Packages Using Artificial Neural Networks
,”
ASME J. Electro. Packag.
,
127
(
3)
, pp.
306
313
.
48.
Wang, T.-Y., Tsai, J.-L., and Chung-Ping Chen, C., 2004, “Thermal and Power Integrity Based Power/Ground Networks Optimization,” Proc. Design, Automation and Test in Europe Conf. and Exhibition
49.
Nagata, M., Swart, N., Stevens, M., and Nathan, A., 1995, “Thermal Based Micro Flow Sensor Optimization Using Coupled Electrothermal Numerical Simulations,” Proc. Int. Conf. on Solid-State Sensors and Actuators, and Eurosensors, Stockholm, Sweden.
50.
Beratlis, N., and Smith, M. K., 2003, “Optimization of Synthetic Jet Cooling for Microelectronics Applications,” Proc. IEEE SEMI-THERM, San Jose, CA.
51.
Chen, G., Rentzch, M., Wang, F., Boroyevich, D., Ragon, S., Stefanovic, V., and Arpilliere, M., 2003, “Analysis and Design Optimization of Front-End Passive Components for Voltage Source Inverters,” Proc. IEEE APEC, Miami Beach, FL.
52.
Rajan, S. D., and Nagaraj, B., 1995, “Towards Enhancing the Life of Plastic Power Packages Using Design Optimization,” Proc. ASME InterPACK, Maui, HI.
53.
Liu
D.-S.
,
Ni
C.-Y.
, and
Chen
C.-Y.
,
2003
, “
Integrated Design Method for Flip Chip CSP with Electrical, Thermal and Thermo-Mechanical Qualifications
,”
Finite Elements in Analysis and Design
,
39
(
7)
, pp.
661
677
.
54.
Xu
L.
,
Reinikainen
T.
,
Ren
W.
,
Wang
B. P.
,
Han
Z.
, and
Agonafer
D.
,
2004
, “
A Simulation-Based Multi-Objective Design Optimization of Electronic Packages under Thermal Cycling and Bending
,”
Microelectronics Reliability
,
44
(
12)
, pp.
1977
1983
.
55.
Hadim, H. A., and Suwa, T., 2004, “Integrated Thermomechanical Design and Optimization of BGA Packages Using Genetic Algorithm,” Proc. ASME Heat Transfer/Fluids Engineering Summer Conf., Charlotte, NC.
56.
Xiong, G., Lu, M., Chen, C.-L., Wang, B. P., and Kehl, D., 2001, “Numerical Optimization of a Power Electronics Cooling Assembly,” Proc. IEEE APEC, Anaheim, CA.
57.
Cheng
Y.-H.
, and
Lin
W.-K.
,
2005
, “
Geometric Optimization of Thermoelectric Coolers in a Confined Volume Using Genetic Algorithms
,”
Applied Thermal Engineering
,
25
(
17–18)
, pp.
2983
2997
.
58.
Cimtalay, S., Peak, R. S., and Fulton, R. E., 1996, “Optimization of Solder Joint Fatigue Life Using Product Model-Based Analysis Models,” Proc. ASME Int. Mech. Eng. Congress & Exposition, Atlanta, GA.
59.
Stoyanov, S., Bailey, C., and Cross, M., 2001, “Integrating Computational Mechanics and Numerical Optimization for the Design of Material Properties in Electronic Packages,” Proc. Conf. on Computational Modeling of Materials, Minerals and Metals, San Diego, CA.
60.
Stoyanov
S.
,
Bailey
C.
, and
Cross
M.
,
2002
, “
Optimisation Modelling for Flip-Chip Solder Joint Reliability
,”
Soldering and Surface Mount Technology
,
14
(
1)
, pp.
49
58
.
61.
Stoyanov, S., Bailey, C., and Lu, H., 2001, “Optimization Tools for Flip-Chip Design,” Proc. ASME InterPACK, Kauai, HI.
62.
Stoyanov, S., and Bailey, C., 2003, “Optimisation and Finite Element Analysis for Reliable Electronic Packaging,” Proc. EuroSIME, Aix-en-Provence, France.
63.
Meinzer, S., Quinte, A., Gorges-Schleuter, M., Jakob, W., Suss, W., and Eggert, H., 1996, “Simulation and Design Optimization of Microsystems Based on Standard Simulators and Adaptive Search Techniques,” Proc. Design Automation Confer.
64.
Wu
W.
,
Dunlop
J. B.
,
Collocott
S. J.
, and
Kalan
B. A.
,
2003
, “
Design Optimization of a Switched Reluctance Motor by Electromagnetic and Thermal Finite-Element Analysis
,”
IEEE Trans. Magn.
,
39
(
5)
, pp.
3334
3336
.
65.
Momen, M. F., and Husain, I., 2003, “Optimizing the Design and Performance of a Switched Reluctance Machine Using Lumped Parameter Thermal Model,” Proc. Int. Electric Machines and Drives Conf.
66.
Icoz, T., and Jaluria, Y., 2005, “Optimization of Vortex Promoter Design Using a Dynamic Data Driven Approach,” Proc. ASME Summer Heat Transfer Conf., San Francisco, CA, United States.
67.
De Kock, D. J., Visser, J. A., Nair, R., Nagulapally, M., and Nigen, J., 2005, “Mathematical Optimization of Electronic Enclosures,” Proc. ASME InterPACK, San Francisco, CA.
68.
Deshpande, A. M., Subbarayan, G., and Mahajan, R. L., 1996, “Global Approximation Concepts for Optimal Design of Electronic Packages,” Proc. ASME Int. Mec. Eng. Congress & Exhibition, Atlanta, GA.
69.
Calmidi
V. V.
, and
Mahajan
R. L.
,
1998
, “
Optimization for Thermal and Electrical Wiring for a Flip-Chip Package Using Physical-Neural Network Modeling
,”
IEEE Trans. Comp. Packag. Technol. C
,
21
(
2)
, pp.
111
117
.
70.
Sridhar, S., and Eggink, H. J., 1999, “Dealing with Uncertainty in Power Loss Estimates in Thermal Design of Power Electronic Circuits,” Proc. Industry Applications Conference, Phoenix, AZ.
71.
Zhang, G. Q., Tay, A. A. O., Ernst, L. J., Liu, S., Qian, Z. F., Bressers, H. J. L., and Janssen, J., 2001, “Virtual Thermo-Mechanical Prototyping of Electronic Packaging Challenges in Material Characterization and Modeling,” Proc. Electronic Components and Technology Conf., Orlando, FL.
72.
Khalilollahi, A., and Warley, R. L., 2005, “Thermal Stress Reduction and Optimization for Orthotropic Composite Boards,” Proc. ASME Summer Heat Transfer Conf., San Francisco, CA.
73.
Khalilollahi, A., Warley, R. L., and Onipede, O., 2005, “Thermal Reliability Design and Optimization for Multilayer Composite Electronic Boards,” Proc. ASME Int. Mech. Eng. Congress and Exposition, Orlando, FL.
74.
Wu, X., Qian, Z., and Wang, Y., 2005, “Integrated Reliability Solutions for New Component Development and Designs Optimization,” Proc. ASME Int. Mech. Eng. Congress & Exposition, Orlando, FL.
75.
Chang
C.-L.
, and
Lin
W.-S.
,
2003
, “
Robust Multiple Criteria Optimization of Thermally Enhanced PQFP
,”
J. Chin. Soc. Mech. Eng. Trans. Chin. Inst. Eng. Ser. C
,
24
(
1)
, pp.
73
80
.
76.
Tsai, C.-H., and Kang, S.-M. S., 1999, “Macrocell Placement with Temperature Profile Optimization,” Proc. ISCAS, Orlando, FL.
77.
Tsai, C.-H., and Kang, S.-M., 2000, “Substrate Thermal Model Reduction for Efficient Transient Electrothermal Simulation,” Proc. IEEE Mixed-Signal Design, SSMSD, San Diego, CA.
78.
Tsai
C.-H.
, and
Kang
S.-M.
,
2000
, “
Cell-Level Placement for Improving Substrate Thermal Distribution
,”
IEEE Trans. Computer-Aided Design
,
19
, pp.
253
266
.
79.
Chen, G., and Sapatnekar, S., 2003, “Partition-Driven Standard Cell Thermal Placement,” Proc. of Int. Symp. on Physical Design, Monterey, CA.
80.
Suwa, T., and Hadim, H., 2006, “Multidisciplinary Heat Generating Cell Placement Optimization Using Genetic Algorithm and Artificial Neural Networks,” Proc. AIAA/ASME Joint Thermophysics and Heat Transfer Conf., San Francisco, CA.
81.
Goplen, B., and Sapatnekar, S., 2003, “Efficient Thermal Placement of Standard Cells in 3D ICs Using a Force Directed Approach,” Proc. Int. Conf. Computer Aided Design, San Jose, CA.
82.
Balakrishnan, K., Nanda, V., Easwar, S., and Lim, S. K., 2005, “Wire Congestion and Thermal Aware 3D Global Placement,” Proc. Asia and South Pacific Design Automation Conf.
83.
Hung, W., Addo-Quaye, C., Theocharides, T., Xie, Y., Vijakrishnan, N., and Irwin, M. J., 2004, “Thermal-Aware IP Virtualization and Placement for Networks-on-Chip Architecture,” Proc. IEEE Int. Conf. Computer Design: VLSI in Computers and Processors
84.
Sankaranarayanan
K.
,
Velusamy
S.
,
Stan
M. R.
, and
Skadron
K.
2005
, “
A Case for Thermal-Aware Floorplanning at the Microarchitectural Level
,”
The Journal of Instruction-Level Parallelism
,
8
, pp.
1
16
.
85.
Hung, W.-L., Xie, Y., Vijaykrishnan, N., Addo-Quaye, C., Theocharides, T., and Irwin, M. J., 2005, “Thermal-Aware Floorplanning Using Genetic Algorithms,” Proc. Int. Symp. Quality of Electronic Design
86.
Sato
T.
,
Ichimiya
J.
,
Ono
N.
,
Hachiya
K.
, and
Hashimoto
M.
,
2005
, “
On-Chip Thermal Gradient Analysis and Temperature Flattening for SoC Design
,”
IEICE Trans. Fundamentals of Electronics, Communications and Computer Sciences
,
E88-A
(
12)
, pp.
3382
3388
.
87.
Cong, J., Wei, J., and Zhang, Y., 2004, “A Thermal-Driven Floorplanning Algorithm for 3D ICs,” Proc. IEEE/ACM Int. Conf. Computer Aided Design, Santa Clara, CA.
88.
Cong, J., and Zhang, Y., 2005, “Thermal-Driven Multilevel Routing for 3-D ICs,” Proc. Asia South Pacific Design Automation Conf., Shanghai, China.
89.
Goplen
B.
, and
Sapatnekar
S. S.
,
2006
, “
Placement of Thermal Vias in 3-D ICs Using Various Thermal Objectives
,”
IEEE Trans. Computer-Aided Design
,
25
(
4)
, pp.
692
709
.
90.
Chao, K. Y., and Wong, D. F., 1995, “Thermal Placement for High-Performance Multichip Modules,” Proc. IEEE Int. Conf. Computer Design, Austin, TX.
91.
Lampaert, K., Gielen, G., and Sansen, W., 1997, “Thermally Constrained Placement of Smart-Power IC’s and Multi-Chip Modules,” Proc. IEEE SEMI-THERM XIII, Austin, TX.
92.
Beebe, C., Carothers, J. D., and Ortega, A., 1999, “Object-Oriented Thermal Placement Using an Accurate Heat Model,” Proc. HICSS-32, Maui, HI.
93.
Beebe, C., Carothers, J. D., and Ortega, A., 2000, “MCM Placement Using a Realistic Thermal Model,” Proc. Great Lakes Symp. on VLSI, Chicago, IL.
94.
Lee
J.
,
Chou
J.-H.
, and
Fu
S.-L.
,
1995
, “
Reliability and Wirability Optimizations for Module Placement on a Convectively Cooled Printed Wiring Board
,”
Integration, the VLSI Journal
,
18
(
2–3)
, pp.
173
186
.
95.
Mihan, K. K., Stacey, B. J., and Montor, T., 1995, “Interdisciplinary Design Optimization for High-Speed Packages and Interconnects,” Proc. IEEE Canadian Conf. on Electrical and Computer Engineering, Montreal, Canada.
96.
Queipo
N. V.
, and
Gil
G. F.
,
2000
, “
Multiobjective Optimal Placement of Convectively and Conductively Cooled Electronic Components on Printed Wiring Boards
,”
ASME J. Electro. Packag.
,
122
(
2)
, pp.
152
159
.
97.
Queipo
N. V.
,
Humphrey
J. A. C.
, and
Ortega
A.
,
1998
, “
Multiobjective Optimal Placement of Convectively Cooled Electronic Components on Printed Wiring Boards
,”
IEEE Trans. Comp. Packag. Technol. A
,
21
(
1)
, pp.
142
153
.
98.
Queipo, N. V., and Gil, G. F., 1997, “Multiobjective Optimization of Component Placement on Planar Printed Wiring Boards,” Proc. IEEE SEMI-THERM XIII, Austin, TX.
99.
Queipo, N. V., Humphrey, J. A. C., and Ortega, A., 1996, “Multiobjective Optimization of Component Placement on Printed Wiring Boards,” Proc. IEEE I-THERM V, Orlando, FL.
100.
Scholand
A. J.
,
Fulton
R. E.
, and
Bras
B.
,
1999
, “
Investigation of PWB Layout by Genetic Algorithms to Maximize Fatigue Life
,”
ASME J. Electro. Packag.
,
121
(
1)
, pp.
31
36
.
101.
Iwata, Y., Hayashi, S., Satoh, R., and Fujmoto, K., 2005, “Circuit-Thermal Collaboration Design Method for Outline Design Stage of Mobile Terminal,” Proc. ASME InterPACK, San Francisco, CA.
102.
Deb
K.
,
Jain
P.
,
Gupta
N. K.
, and
Maji
H. K.
,
2004
, “
Multiobjective Placement of Electronic Components Using Evolutionary Algorithms
,”
IEEE Trans. Comp. Packag. Technol.
,
27
(
3)
, pp.
480
492
.
103.
Suwa, T., and Hadim, H., 2007, “Multidisciplinary Placement Optimization of Heat Generating Electronic Components on Printed Circuit Boards,” ASME J. Electro. Packag. (to be published).
104.
Suwa, T., and Hadim, H., 2007, “Multidsciplinary Placement Optimization of Heat Generating Electronic Components on a Printed Circuit Board in an Enclosure,” IEEE Transactions on Component and Packaging Technology (to be published).
105.
Gopinath, D., Joshi, Y. K., and Azarm, S., 2001, “Multi-Objective Placement Optimization of Power Electronic Devices on Liquid Cooled Heat Sinks,” Proc. Annual IEEE Symp., San Jose, CA.
106.
Gopinath
D.
,
Joshi
Y.
, and
Azarm
S.
,
2005
, “
An Integrated Methodology for Multiobjective Optimal Component Placement and Heat Sink Sizing
,”
IEEE Trans. Comp. Packag. Technol.
,
28
(
4)
, pp.
869
876
.
107.
Campbell
I. M.
,
Amon
H. C.
, and
Cagan
J.
,
1997
, “
Optimal Three-Dimensional Placement of Heat Generating Electronic Components
,”
ASME J. Electro. Packag.
,
119
(
2)
, pp.
106
113
.
108.
Campbell, I. M., Cagan, J., Amon, H. C., and Szykman, S., 1995, “Electronic Component Placement Using Simulated Annealing under Thermal Constraints,” Proc. ASME Int. Mec. Eng. Congress and Exposition, San Francisco, CA.
109.
Jackson, B., and Norgard, J., 2002, “A Stochastic Optimization Tool for Determining Spacecraft Avionics Box Placement,” Proc. IEEE Aerospace Conference, Big Sky, MT.
110.
Kaczorowski, P. R., Joshi, Y., and Azarm, S., 2003, “Multi-Objective Design of Liquid Cooled Power Electronic Modules for Transient Operation,” Proc. IEEE SEMI-THERM, San Jose, CA.
111.
Kaisare, A., Agonafer, D., Haji-Shiekh, A., Chriysler, G., and Mahajan, R., 2005, “Thermal Based Optimization of Functional Block Distributions in a Non-Uniformly Powered Die,” Proc. ASME InterPack, San Francisco, CA.
112.
Lee
J.
, and
Chou
J.-H.
,
1996
, “
Hierarchical Placement for Power Hybrid Circuits under Reliability and Wireability Constraints
,”
IEEE Trans. Rel.
,
45
, pp.
200
207
.
113.
Huang
Y.
, and
Fu
S.
,
2000
, “
Thermal Placement Design for MCM Applications
,”
ASME J. Electro. Packag.
,
122
(
2)
, pp.
115
120
.
114.
Huang
Y.-J.
,
Fu
S.-L.
,
Jen
S.-L.
, and
Guo
M.-h.
,
2001
, “
Fuzzy Thermal Modeling for MCM Placement
,”
Microelectronics Journal
,
32
(
10–11)
, pp.
863
868
.
115.
Huang
Y.-J.
, and
Guo
M.-h.
,
2001
, “
Fuzzy Thermal Placement for Multichip Module Applications
,”
Fuzzy Sets and Systems
,
122
(
2)
, pp.
185
194
.
116.
Lee
J.
,
2003
, “
Thermal Placement Algorithm Based on Heat Conduction Analogy
,”
IEEE Trans. Comp. Packag. Technol.
,
26
(
2)
, pp.
473
482
.
117.
Lee
J.
,
2005
, “
Reliability and Wireability Optimizations for Chip Placement on Multichip Modules
,”
IEEE Trans. Electron. Packag. Manufact.
,
28
(
2)
, pp.
133
141
.
118.
Chu
C. C. N.
, and
Wong
D. F.
,
1998
, “
A Matrix Synthesis Approach to Thermal Placement
,”
IEEE Trans. Computer-Aided Design
,
17
(
11)
, pp.
1166
1174
.
119.
Newbould, R. D., and Carothers, J. D., 2003, “Cluster Growth Revisited: Fast, Mixed-Signal Placement of Blocks and Gates,” Proc. Southwest Symp. Mixed-Signal Design, Las Vegas, NV.
120.
Deb
K.
,
Pratap
A.
,
Agarwal
S.
, and
Meyarivan
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2)
, pp.
182
197
.
This content is only available via PDF.
You do not currently have access to this content.