Thermal management in the next decade of microelectronics and optoelectronics will require heat transfer fluids with improved performance over those currently available. The strategy of adding SOLID particles to fluids for improving thermal conductivity has been pursued for nearly a century. In this work, a novel concept of using LIQUID nanodroplets for enhancing thermal conductivity has been developed and was experimentally-demonstrated in water-in-FC72 suspensions, called "nanoemulsion-fluids". The thermal conductivity of FC72 is found to be increased by up to 52% for a nanoemulsion-fluid containing 12vol% water nanodroplets of radius 9.8nm. Such types of nanoemulsion-fluids possess long-term stability and can be mass produced because of no needs for SOLID nanoparticles. The development of nanoemulsion-fluids would open a new direction for thermal fluids studies.

1.
Eastman
J. A.
,
Phillpot
S. R.
,
Choi
S. U. S.
, and
Keblinski
P.
, “
Thermal Transport In Nanofluids
,”
Annual Review of Materials Research
, vol.
34
, pp.
219
246
,
2004
.
2.
J. C. Maxwell, A Treatise on Electricity and Magnetism, 2nd ed. Cambridge, U.K.: Oxford University Press, 1904.
3.
S. U. S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles,” in Developments and Applications of Non-Newtonian Flows, D. A. Siginer and H. P. Wang, Eds. New York: ASME, 1995, pp. 99–105.
4.
Eastman
J. A.
,
Choi
S. U. S.
,
Li
S.
,
Yu
W.
, and
Thompson
L. J.
, “
Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles
,”
Applied Physics Letters
, vol.
78
, pp.
718
720
,
2001
.
5.
Choi
S. U. S.
,
Zhang
Z. G.
,
Yu
W.
,
Lockwood
F. E.
, and
Grulke
E. A.
, “
Anomalous thermal conductivity enhancement in nanotube suspensions
,”
Applied Physics Letters
, vol.
79
, pp.
2252
2254
,
2001
.
6.
Das
S. K.
,
Putra
N.
,
Thiesen
P.
, and
Roetzel
W.
, “
Temperature dependence of thermal conductivity enhancement for nanofluids
,”
Transactions of the ASME. Journal of Heat Transfer
, vol.
125
, pp.
567
574
,
2003
.
7.
Patel
H. E.
,
Das
S. K.
,
Sundararajan
T.
,
Nair
A. Sreekumaran
,
George
B.
, and
Pradeep
T.
, “
Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects
,”
Applied Physics Letters
, vol.
83
, pp.
2931
2933
,
2003
.
8.
Kumar
D. H.
,
Patel
H. E.
,
Kumar
V. R. R.
,
Sundararajan
T.
,
Pradeep
T.
, and
Das
S. K.
, “
Model for heat conduction in nanofluids
,”
Physical Review Letters
, vol.
93
, pp.
144301/1
144301/1
,
2004
.
9.
Prasher
R.
,
Bhattacharya
P.
, and
Phelan
P. E.
, “
Thermal conductivity of nanoscale colloidal solutions (nanofluids)
,”
Physical Review Letters
, vol.
94
, pp.
1
4
,
2005
.
10.
B. Yang and Z. H. Han, “Temperature Dependent Thermal Conductivity of Nanorods-based Nanofluids,” Applied Physics Letters, in press.
11.
Tzeng
S. C.
,
Lin
C. W.
, and
Huang
K. D.
, “
Heat transfer enhancement of nanofluids in rotary blade coupling of four-wheel-drive vehicles
,”
Acta Mechanica
, vol.
179
, pp.
11
23
,
2005
.
12.
B. Yang, “A new type of perfluorocarbon based nanofluids for effective heat transfer.” US Provisional Paten 60/731, 793.
13.
Yang
B.
and
Han
Z.
, “
Thermal conductivity enhancement in water-in-FC72 nanoemulsion fluids
,”
Applied Physics Letters
, vol.
88
, pp.
1
3
,
2006
. Also selected for the July 11, 2006 issue of the Virtual Journal of Nanoscale Science & Technology, http:/www/.vjnano.org.
14.
http://www.3m.com/.
15.
Xuan
Y. M.
and
Li
Q.
, “
Heat transfer enhancement of nanofluids
,”
International Journal of Heat and Fluid Flow
, vol.
21
, pp.
58
64
,
2000
.
16.
Hoar
T. P.
and
Schulman
J. H.
, “
Transparent Water-In-Oil Dispersions: The Oleopathic Hydromicelle
,”
Nature
, vol.
152
, pp.
102
105
,
1943
.
17.
P. Kumar and K. L. Mittal, “Handbook of Microemulsion Science and Technology,” CRC, 1999.
18.
B. Chu, Laser light scattering. New York: Academic Press, 1974.
19.
Cahill
D. G.
, “
Thermal conductivity measurement from 30-k to 750-k - the 3w method
,”
Review of Scientific Instruments
, vol.
61
, pp.
802
808
,
1990
.
20.
Yang
B.
,
Liu
W. L.
,
Liu
J. L.
,
Wang
K. L.
, and
Chen
G.
, “
Measurements of anisotropic thermoelectric properties in superlattices
,”
Applied Physics Letters
, vol.
81
, pp.
3588
3590
,
2002
.
21.
B. Yang, J. L. Liu, K. L. Wang, and G. Chen, “Simultaneous measurements of Seebeck coefficient and thermal conductivity across superlattice,” Applied Physics Letters. Also selected for the March 18, 2002 issue of the Virtual Journal of Nanoscale Science & Technology, http:/www/.vjnano.org., vol. 80, pp. 1758–1760, 2002.
22.
Blackwell
J. H.
, “
A transient-flow method for determination of thermal constants of insulating materials in bulk.1. theory
,”
Journal of Applied Physics
, vol.
25
, pp.
137
144
,
1954
.
23.
Nan
C. W.
,
Birringer
R.
,
Clarke
D. R.
, and
Gleiter
H.
, “
Effective thermal conductivity of particulate composites with interfacial thermal resistance
,”
Journal of Applied Physics
, vol.
81
, pp.
6692
6699
,
1997
.
24.
Hong
T.
,
Yang
H.
, and
Choi
C. J.
, “
Study of the enhanced thermal conductivity of Fe nanofluids
,”
Journal of Applied Physics
, vol.
97
, pp.
64311
1
,
2005
.
25.
Huxtable
S. T.
,
Cahill
D. G.
,
Shenogin
S.
,
Xue
L. P.
,
Ozisik
R.
,
Barone
P.
,
Usrey
M.
,
Strano
M. S.
,
Siddons
G.
,
Shim
M.
, and
Keblinski
P.
, “
Interfacial heat flow in carbon nanotube suspensions
,”
Nature Materials
, vol.
2
, pp.
731
734
,
2003
.
26.
Patel
H. A.
,
Garde
S.
, and
Keblinski
P.
, “
Thermal resistance of nanoscopic liquid-liquid interfaces: Dependence on chemistry and molecular architecture
,”
Nano Letters
, vol.
5
, pp.
2225
2231
,
2005
.
27.
Jang
S. P.
and
Choi
S. U. S.
, “
Role of Brownian motion in the enhanced thermal conductivity of nanofluids
,”
Applied Physics Letters
, vol.
84
, pp.
4316
4318
,
2004
.
This content is only available via PDF.
You do not currently have access to this content.