This paper describes the numerical simulation of the flow and heat transfer around a ventilated brake disc. The aim of this investigation is to provide more insight on ventilated brake disc flow phenomena with a view to improve heat dissipation. Analysis of brake disc has been carried out using FLUENT (CFD code based on the Finite Volume Method). Numerical predictions of the flow and heat transfer are compared with available experimental data in the literature [2]. In the present work validation of numerical results are discussed in two parts. In the first part, the optimum grid was found from the grid independence test and in the second part the effect of turbulence models on flow field development was studied. Three rotors have been considered with each of 36, 40 and 45 number of vanes. Each rotor of two flow passages has been considered for the analysis. An isothermal analysis has been carried out to analyse the heat transfer. From the grid independence test it was found that the grid with 300,000 cells is seems to be the appropriate. SST k-ω turbulence model was able to predict the flow field with an accuracy of 3% and 1% in predicting tangential velocity and radial velocity respectively. From the isothermal rotor analysis it is found that the geometry having 45 vanes dissipates 7.7% and 5% more heat compared to geometries having number of vanes 36 and 40 respectively.
Skip Nav Destination
ASME 2006 International Mechanical Engineering Congress and
Exposition
November 5–10, 2006
Chicago, Illinois, USA
Conference Sponsors:
- Heat Transfer Division
ISBN:
0-7918-4786-1
PROCEEDINGS PAPER
Flow and Heat Transfer Analysis Through a Brake Disc: A CFD Approach
S. Manohar Reddy,
S. Manohar Reddy
Indian Institute of Technology-Madras
Search for other works by this author on:
J. M. Mallikarjuna,
J. M. Mallikarjuna
Indian Institute of Technology-Madras
Search for other works by this author on:
V. Ganesan
V. Ganesan
Indian Institute of Technology-Madras
Search for other works by this author on:
S. Manohar Reddy
Indian Institute of Technology-Madras
J. M. Mallikarjuna
Indian Institute of Technology-Madras
V. Ganesan
Indian Institute of Technology-Madras
Paper No:
IMECE2006-14317, pp. 481-485; 5 pages
Published Online:
December 14, 2007
Citation
Reddy, SM, Mallikarjuna, JM, & Ganesan, V. "Flow and Heat Transfer Analysis Through a Brake Disc: A CFD Approach." Proceedings of the ASME 2006 International Mechanical Engineering Congress and Exposition. Heat Transfer, Volume 3. Chicago, Illinois, USA. November 5–10, 2006. pp. 481-485. ASME. https://doi.org/10.1115/IMECE2006-14317
Download citation file:
22
Views
Related Proceedings Papers
Related Articles
Heat Transfer Improvement in Automotive Brake Disks Via Shape Optimization of Cooling Vanes Using Improved TPSO Algorithm Coupled With Artificial Neural Network
J. Thermal Sci. Eng. Appl (February,2018)
Mathematical Modeling of Transport Processes in Funnel Shaped Mold of Steel Thin Slab Continuous Caster
J. Heat Transfer (June,2011)
Thermal Performance Metrics for Arranging Forced Air Cooled Servers in a Data Processing Cabinet
J. Electron. Packag (December,2005)
Related Chapters
Concluding remarks
Mechanical Blood Trauma in Circulatory-Assist Devices
Introduction
Introduction to Finite Element, Boundary Element, and Meshless Methods: With Applications to Heat Transfer and Fluid Flow
Laminar Fluid Flow and Heat Transfer
Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine