In manufacturing environments, a common task is to quickly move a suspended payload point-to-point along a fixed overhead conveyor track without inducing significant payload vibration. Recent research in command shaping has shown remarkably effective ways to reduce the swing of a suspended payload providing the motion of the trolley is not constrained. However, the development of a command shaper where the trajectory of the trolley is constrained to follow a fixed curvilinear path has not been explored. This paper will present the development of a simple feedforward command shaper for fast, low vibration, point-to-point movement of a payload suspended from a trolley constrained to follow a fixed generalized path. The command shaping method involves modifying the command signal by convolving it with a series of impulses. Prior work has suggested command shaping to be very effective for fast, low-vibration movement of flexible systems. In this paper, command shaping methods are applied to an overhead conveyor system constrained to move along a fixed curvilinear path. Two new command shapers are presented for canceling payload vibration induced by motion of the trolley along the path. The designed Tangential Vibration (TV) shaper reduces payload vibrations induced by tangential accelerations of the trolley along the path, while the Centripetal-Tangential Vibration (CTV) shaper reduces vibrations induced by both tangential and centripetal accelerations. A key result of this study is that a command shaper having at least three impulses is required to yield zero residual vibration for motion along a curvilinear path. A simple pendulum payload attached to an actual small-scale overhead trolley following a constrained path is used to evaluate the performance of the designed command shapers. It is shown that the designed shapers significantly reduce payload swing compared to unshaped performance. An experimental sensitivity analysis shows the designed shapers are robust to system modeling errors and variations in path parameters.

This content is only available via PDF.
You do not currently have access to this content.