In this paper, the characteristics of two rotary tables driven by worm gear and roller gear cam are measured and compared. The positioning accuracy and repeatability as specified in ISO 230-2 are measured together with the rotational fluctuation, backlash, friction torque, frequency response of the systems and also the influence of unbalance mass on rotational motion. Two rotary encoders which were attached to motor and output axis were used for measurements. The motor, controller, and the rotary encoders were kept the same for both tables to ignore the effects of these units on results. Furthermore, the simulations were carried out by mathematical models which were proposed by two of the authors and the results were compared with measured results. From the simulation results, the torsional stiffness and friction torque were identified and also compared. The results show that the measured and simulated data have a good agreement and therefore it can be said that the identified parameters from simulations are accurate. The result shows that the performances of the rotary table driven by roller gear cam is better than that of rotary table driven by worm gear.

This content is only available via PDF.
You do not currently have access to this content.