This study is focused on the simulation of open channel turbulent flow over flooded laboratory scale bridge decks and formation of scour holes under various flooding conditions. Solutions for turbulent flow field are based on Reynolds Averaged Navier-Stokes (RANS) equations and turbulence closure models using the STAR-CD commercial computational fluid dynamics (CFD) software. An iterative computational methodology is developed for predicting equilibrium scour profiles using the single-phase flow model with a moving boundary formulation. The methodology relies on an empirical correlation for critical bed shear stress that is used to characterize the condition for onset of sediment motion and an effective bed roughness that is a function of sediment particle size. The computational model and iterative methodology were stable and converged to an equilibrium scour hole shape and size that compares reasonably well with experiment using a constant critical shear stress value.

This content is only available via PDF.
You do not currently have access to this content.