In this work modeling of a vibro-acoustic system and global sound field control with both acoustic and structural actuators have been studied. The model of the system consists of a 3D rectangular cavity with five acoustically rigid walls and a flexible plate on the top of cavity. First, modeling of the vibro-acoustic system has been acquired and subsequently the mode shapes and natural frequencies of the coupled system have been calculated. Plane waves on the plate surface are the main sources of disturbances in this system. Undesired sound (noise) which is propagated into the enclosure is controlled by mounted piezoelectric patch actuators on the plate and acoustic piston sources (speakers) inside cavity. The global active control is designed to minimize the acoustic potential energy inside the cavity. The control performance has been investigated by acoustic and structural actuators separately and simultaneously.

This content is only available via PDF.
You do not currently have access to this content.