Optical imaging system always appears an asymmetric displacement under finite element analysis (FEA) for the asymmetry of the loads and the optomechanical structure, although the system is designed by an axisymmetric way. The asymmetric displacement can generate a misalignment, between “the (0,0) field” of the aberration analysis and “the central field” through the optical axis, and decline the accuracy of objective function of an optimization design. An algorithm is presented to separate the rigid-body linear displacement, which has no influence on the imaging quality, from the FEA data. Actually the linear displacement of system is a special region around the (0,0) field on the image surface rather than a displacement such as any single optical element. In the algorithm, the region with the same value of optical modulation transfer function (MTF) calculated by the optical ray tracing tools is defined as a domain D(x,y), where the (x,y) is a set or subset of (x0,y0) and MTF(x0,y0) is equal to MTF(0,0). The nodal displacements can add or subtract a certain value while the modified central point on or in the region in an optimal design of optical system under any static, dynamic and vibratory loads. And an example is demonstrated that the nodal displacement processed by the algorithm is more suitable to optimize the imaging system suffered from the static and vibration conditions than the original FEA data.
Skip Nav Destination
ASME 2011 International Mechanical Engineering Congress and Exposition
November 11–17, 2011
Denver, Colorado, USA
Conference Sponsors:
- ASME
ISBN:
978-0-7918-5493-8
PROCEEDINGS PAPER
An Algorithm of Separating Rigid-Body Linear Displacement From FEA Data of Optical Imaging System
Xinmin Guo,
Xinmin Guo
Harbin Institute of Technology, Harbin, Heilongjiang, China
Search for other works by this author on:
Weimin Kang,
Weimin Kang
Harbin Institute of Technology, Harbin, Heilongjiang, China
Search for other works by this author on:
Jie Zhao
Jie Zhao
Harbin Institute of Technology, Harbin, Heilongjiang, China
Search for other works by this author on:
Xinmin Guo
Harbin Institute of Technology, Harbin, Heilongjiang, China
Weimin Kang
Harbin Institute of Technology, Harbin, Heilongjiang, China
Jie Zhao
Harbin Institute of Technology, Harbin, Heilongjiang, China
Paper No:
IMECE2011-64416, pp. 1099-1103; 5 pages
Published Online:
August 1, 2012
Citation
Guo, X, Kang, W, & Zhao, J. "An Algorithm of Separating Rigid-Body Linear Displacement From FEA Data of Optical Imaging System." Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition. Volume 7: Dynamic Systems and Control; Mechatronics and Intelligent Machines, Parts A and B. Denver, Colorado, USA. November 11–17, 2011. pp. 1099-1103. ASME. https://doi.org/10.1115/IMECE2011-64416
Download citation file:
17
Views
0
Citations
Related Proceedings Papers
Related Articles
Three-Dimensional Analysis of a Concentrated Solar Flux
J. Sol. Energy Eng (February,2008)
Constrained Design Optimization of Vibration Energy Harvesting Devices
J. Vib. Acoust (April,2014)
H 2 , Mixed H 2 / H ∞ and H 2 / L 1 Optimally Tuned Passive Isolators and Absorbers
J. Dyn. Sys., Meas., Control (June,1998)
Related Chapters
LARGE STANDOFF MAGNETOMETRY TECHNOLOGY ADVANCES TO ASSESS PIPELINE INTEGRITY UNDER GEOHAZARD CONDITIONS AND APPROACHES TO UTILISATION OF IT
Pipeline Integrity Management Under Geohazard Conditions (PIMG)
Data Tabulations
Structural Shear Joints: Analyses, Properties and Design for Repeat Loading
Using Statistical Learning Theory to Improve Treatment Response for Metastatic Colorectal Carcinoma
Intelligent Engineering Systems through Artificial Neural Networks, Volume 20