Traumatic brain injury (TBI) is one of the most important problems in biomechanical engineering, and there have been many experiments conducted in order to characterize the mechanical properties of brain tissue. However, obtaining fresh human brain tissue is difficult, if not impossible. Also, the sample preparation and testing protocols must be carried out with great delicacy because brain tissue is very soft and vulnerable to being deformed under a very small amount of load. Most importantly, according to several researchers, each sample must be tested only one time as the tissue may be damaged and its characteristics subsequently changed. This paper is intended to examine the amount of decay that can happen in material characteristics due to retesting. A stress relaxation test is conducted on the same samples of the swine brain tissue multiple times in small and large deformations. The mechanical properties of the substance are calculated before and after retesting, and the constants of the tissue, as mechanical characteristics, are determined and compared. Short- and long-term moduli, relaxation times and relaxation functions are calculated and compared to understand how much they decay after repeating the experiments. The results show that retesting does not significantly change the elastic part of the tissue characteristics, but the viscous behavior shows a relatively sizeable change. The ability to account for the material decay of the samples due to repetition of the experiments results in the need for fewer samples and less preparation time and effort.

This content is only available via PDF.
You do not currently have access to this content.