The current paper focusses on the characterization of gravity-driven dry granular flows in cylindrical tubes. With a motive of using dense particulate media as heat transfer fluids (HTF), the study was primarily focused to address the characteristics of flow regimes with a packing fraction of ∼60%. Experiments were conducted to understand the effects of different flow parameters, including: tube radius, tube inclination, tube length and exit diameter. These studies were conducted on two types of spherical particles — glass and ceramic — with mean diameters of 150 μm and 300 μm respectively. The experimental data was correlated with the semi-empirical equation based on Beverloo’s law. In addition, the same flow configuration was studied through three-dimensional computer simulations by implementing the Discrete Element Method for the Lagrangian modelling of particles. A soft-particle formulation was used with Hertz-Mindilin contact models to resolve the interaction forces between particles. The simulation results were used to examine the velocity, shear rate and packing fraction profiles to study the detailed flow dynamics. Curve-fits were developed for the mean velocity profiles which could be used in developing hydrodynamic analogies for granular flows. The current work thus identifies the basic features of gravity driven dense granular flows that could form a basis for defining their rheology.
Skip Nav Destination
ASME 2015 International Mechanical Engineering Congress and Exposition
November 13–19, 2015
Houston, Texas, USA
Conference Sponsors:
- ASME
ISBN:
978-0-7918-5746-5
PROCEEDINGS PAPER
Experimental and Computational Studies of Gravity-Driven Dense Granular Flows
Yesaswi N. Chilamkurti,
Yesaswi N. Chilamkurti
North Carolina State University, Raleigh, NC
Search for other works by this author on:
Richard D. Gould
Richard D. Gould
North Carolina State University, Raleigh, NC
Search for other works by this author on:
Yesaswi N. Chilamkurti
North Carolina State University, Raleigh, NC
Richard D. Gould
North Carolina State University, Raleigh, NC
Paper No:
IMECE2015-50762, V07AT09A001; 11 pages
Published Online:
March 7, 2016
Citation
Chilamkurti, YN, & Gould, RD. "Experimental and Computational Studies of Gravity-Driven Dense Granular Flows." Proceedings of the ASME 2015 International Mechanical Engineering Congress and Exposition. Volume 7A: Fluids Engineering Systems and Technologies. Houston, Texas, USA. November 13–19, 2015. V07AT09A001. ASME. https://doi.org/10.1115/IMECE2015-50762
Download citation file:
36
Views
0
Citations
Related Proceedings Papers
Related Articles
Investigation of the Pressure Drop Across Packed Beds of Spherical Beads: Comparison of Empirical Models With Pore-Level Computational Fluid Dynamics Simulations
J. Fluids Eng (July,2019)
Two-Dimensional Effects on the Response of Packed Bed Regenerators
J. Heat Transfer (May,1989)
A New Uniform Continuum Modeling of Conductive and Radiative Heat Transfer in Nuclear Pebble Bed
J. Heat Transfer (August,2019)
Related Chapters
Natural Gas Transmission
Pipeline Design & Construction: A Practical Approach, Third Edition
The Thermo —Mechanical Analysis of Mechanical Packing (SEAL), Using Finite Element Method (FEM) — Results and Conclusions
International Conference on Mechanical Engineering and Technology (ICMET-London 2011)
Optimization of an Irregular 2D Packing Problem by a Genetic-Based Heuristic Algorithm
International Conference on Computer and Automation Engineering, 4th (ICCAE 2012)