Electrosurgical vessel sealing, a tissue joining process, has been widely used in surgical procedures, such as prostatectomies for bleeding control. The heat generated during the process may cause thermal damages to the surrounding tissues which can lead to detrimental postoperative problems. Having better understanding about the thermal spread helps to minimize these undesired thermal damages. The purpose of this study is to investigate the changes of tissue thermal conductivity during the joining process. We propose a hybrid method combining experimental measurement with inverse heat transfer analysis to determine thermal conductivity of thin tissue sample. Instead of self-heating the tissue by the thermistor, we apply an external cold boundary on the other side of the tissue sample to stimulate a higher temperature gradient without denaturing the tissue in comparison to the heated method. The inverse heat transfer technique was then applied to determine the tissue thermal conductivity. Tissue thermal conductivity at different levels (0%, 25%, 50%, 75%, and 100%) of the joining process was measured. The results show a decreasing trend in tissue thermal conductivity with increasing joining level. When the tissue is fully joined, an average of 60% reduction in tissue thermal conductivity was found.

This content is only available via PDF.
You do not currently have access to this content.