Peridynamics ability to model crack as a material response removes deficiencies associated with using classical continuum-based methods in modeling discontinuities. Due to its nonlocal formulation, however, peridynamics is computationally more expensive than the classical continuum-based numerical methods such as finite element method. To reduce the computational cost, peridynamics can be coupled with finite element method. In this method, peridynamics is used only in critical areas such as the vicinity of crack tip and finite element method is used everywhere else. The main issue associated with such coupling methods is the spurious wave reflections occurring at the interface of peridynamics and finite elements. High frequency waves traveling from peridynamics to finite element spuriously reflect back at the interface and the amplitude of transmitted waves also alter. In this paper, we take an analytical approach to study this phenomenon of spurious reflections. We study the impact of factors such as horizon size of peridynamic formulation, discretization, and change in mesh size on the amplitude of spuriously reflected waves. Finally, we present a method to reduce these spurious reflections by using Arlequin method.

You do not currently have access to this content.