Abstract

To enable the development of an automated coloring process, dental zirconia is examined in terms of porosity, pore size and shrinkage during sintering. The properties of commercially available metal ionic inks such as viscosity, density and surface tension are investigated. Droplet impact on the zirconia surface and the absorption into the pores is analyzed with a high speed camera. The color result after sintering is investigated and compared to tooth samples.

A method is developed to achieve a realistic, smooth color transition on flat zirconia samples. This is achieved by mixing the single inks directly on the zirconia through sequential application. Consequently, the number of different inks required to reproduce the full dental color scale can be reduced. Additionally, three dimensional tooth replacements are colored with the developed method.

This content is only available via PDF.
You do not currently have access to this content.