Abstract

Thin wall structures are primarily deployed in automotive chassis to increase the energy absorption capacity of the automobiles in the event of an accident. Researchers have delved into developing lighter structures for improving automobiles’ fuel efficiency with a challenge of maintaining or preferably exceeding the energy absorption properties of the structure. In this study, the work presented is a continuation of research conducted on exploring the effects of the introduction of cellular core in tubular structures under axial compressive loading. The crushing response of cellular core cross tube was numerically studied using ABAQUS/Explicit module. The characteristics such as deformation or collapsing modes, crushing/ reactive force, locking strain, energy curves, and specific energy absorbed were studied. The cellular core cross tube shows significant potential for reducing the weight of automobile structure while giving positive indication towards enhancing the specific energy absorption capacity.

This content is only available via PDF.
You do not currently have access to this content.