Through the last two decades, many studies have demonstrated the ability of leading-edge protrusions (tubercles), inspired from the pectoral flippers of the humpback whale, to be an effective passive flow control method for the stall phase of an airfoil in some cases depending on the geometrical features and the flow regime. Nevertheless, there is a little work associated with revealing tubercles performance for the lifting surfaces with a highly cambered cross-section, used in numerous applications. The present work aims to investigate the effect of implementing leading edge tubercles on the performance of an infinite span rectangular wing with the highly cambered S1223 foil at different flow regimes. Two sets; baseline one and a modified with tubercles have been studied at Re = 0.1 × 106, 0.3 × 106 and 1.5 × 106 using computational fluid dynamics with a validated model. The numerical results demonstrated that Tubercles have the ability to entirely alter the flow structure over the airfoil, confining the separation to troughs, hence, softening the stall characteristics. However, the tubercle modification expedites the presence of the stalled flow over the suction side, lowering the stall angle for the three mentioned Reynolds numbers. While, no considerable difference occurs in lift and drag before the stall.

This content is only available via PDF.
You do not currently have access to this content.