Abstract

Metal additive manufacturing is a rapidly growing and sophisticated industry however the manufacturing processes and equipment for the heat treatment of the needed powdered metals is underdeveloped. Heat treatment is a key step in the powdered metal production process and is often needed to produce desired material properties. The objective of this paper is to examine the design of a heat treatment machine that addresses the needs of a laboratory performing research on powdered metals. The device was designed to address the three criteria of a heat treatment device; treatment, environment, and containment. The treatment criterion is accomplished by continuous powder flow through a furnace. The environment criterion is accomplished through a gas handling system capable of creating both an argon and vacuum environment. Finally, the containment criterion is accomplished through a network of tubes that provides structure to contain the powder. The design of this machine will allow research and development labs to heat treat powdered to a higher quality at a significantly faster rate.

This content is only available via PDF.
You do not currently have access to this content.