Abstract

In a fuel cell vehicle, the water content of the gas supply within certain ranges plays a key role in improving the performance of a proton exchange membrane. The lower limit of water content in the air supply is to avoid the problem of drying-out, while the upper prevents flooding. Water management can be accomplished by a membrane humidifier which allows water vapor to permeate the mixture from the side having the higher water concentration, moving to the other side of the membrane.

In this study, the variation in water content collected at the outlet of a membrane humidifier is investigated with a one-dimensional mass exchanger model and various operating variables. The vapor concentration of outlet flows is affected by operating temperature and relative humidity of the membrane humidifier. Relative humidity of the dry side at the point of outlet flow, to be supplied to the fuel cell module, is the key characteristic. The analogy of the effectiveness-NTU approach for heat transfer is used to analyze the characteristics of the mass exchanger. Mass flux through the membranes is estimated with an overall mass transfer coefficient which represents vapor transport characteristics moving through the membrane module. This coefficient has a similar role to the overall heat transfer coefficient in heat exchanger analysis. This parametric study is conducted to understand the effects of different variables. The Effectiveness-NTU methodology of mass transfer uses the overall mass transfer coefficient and the mass transfer rate, as evaluated experimentally. Simulink software is then employed to deliver outcomes of the model for different operating conditions.

This content is only available via PDF.
You do not currently have access to this content.