Condition assessment of machinery components such as gears is important to maintain their normal operations and thus can bring benefit to their life circle management. Data-driven approaches haven been a promising way for such gear condition monitoring and fault diagnosis. In practical situation, gears generally have a variety of fault types, some of which exhibit continuous severities of fault. Vibration data collected oftentimes are limited to reflect all possible fault types. Therefore, there is practical need to utilize the data with a few discrete fault severities in training and then infer fault severities for the general scenario. To achieve this, we develop a fuzzy neural network (FNN) model to classify the continuous severities of gear faults based on the experimental measurement. Principal component analysis (PCA) is integrated with the FNN model to capture the main features of the time-series vibration signals with dimensional reduction for the sake of computational efficiency. Systematic case studies are carried out to validate the effectiveness of proposed methodology.

This content is only available via PDF.
You do not currently have access to this content.