A corner of bonded dissimilar materials is one of the main causes of the failure of electronic packages or MEMS structures. These materials are sometimes anisotropic materials and piezoelectric materials. To evaluate the integrity of a corner of bonded piezoelectric materials is useful for the reliability of electronic packages and MEMS. Asymptotic solutions around the interfacial corner between piezoelectric bimaterials can be obtained by the combination of the Stroh formalism and the Williams eigenfunction expansion method. Based on an extension of the Stroh formalism and the H-integral derived from Betti’s reciprocal principle for piezoelectric problems, we analyzed the stress intensity factors (SIFs) and asymptotic solutions of piezoelectric bimaterials. The eigenvalues and eigenvectors of an interfacial corner between dissimilar piezoelectric anisotropic materials are determined using the key matrix. The H-integral for piezoelectric problems is introduced to obtain the scalar coefficients, which are related to the SIFs. We propose a new definition of the SIFs of an interfacial corner for piezoelectric materials, and we demonstrated the accuracy of the SIFs by comparing the asymptotic solutions with the results obtained by the finite element method (FEM) with very fine meshes. Proposed method can analyze the stress intensity factors of a corner and a crack between dissimilar isotropic materials, anisotropic materials and anisotropic piezoelectric materials.
Skip Nav Destination
Stress Intensity Factor Analysis of an Interfacial Corner Between Piezoelectric Bimaterials in a Two Dimensional Structure Using the
ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems
July 6–8, 2011
Portland, Oregon, USA
Conference Sponsors:
- Electronic and Photonic Packaging Division
ISBN:
978-0-7918-4461-8
PROCEEDINGS PAPER
Stress Intensity Factor Analysis of an Interfacial Corner Between Piezoelectric Bimaterials in a Two Dimensional Structure Using the H -Integral Method
Hiroshi Hirai,
Hiroshi Hirai
Kyoto University, Kyoto, Japan
Search for other works by this author on:
Mitsutoshi Abe,
Mitsutoshi Abe
Kyoto University, Kyoto, Japan
Search for other works by this author on:
Masatsugu Chiba,
Masatsugu Chiba
Kyoto University, Kyoto, Japan
Search for other works by this author on:
Noriyuki Miyazaki
Noriyuki Miyazaki
Kyoto University, Kyoto, Japan
Search for other works by this author on:
Toru Ikeda
Kyoto University, Kyoto, Japan
Hiroshi Hirai
Kyoto University, Kyoto, Japan
Mitsutoshi Abe
Kyoto University, Kyoto, Japan
Masatsugu Chiba
Kyoto University, Kyoto, Japan
Noriyuki Miyazaki
Kyoto University, Kyoto, Japan
Paper No:
IPACK2011-52073, pp. 463-471; 9 pages
Published Online:
February 14, 2012
Citation
Ikeda, T, Hirai, H, Abe, M, Chiba, M, & Miyazaki, N. "Stress Intensity Factor Analysis of an Interfacial Corner Between Piezoelectric Bimaterials in a Two Dimensional Structure Using the H-Integral Method." Proceedings of the ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems. ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems, MEMS and NEMS: Volume 1. Portland, Oregon, USA. July 6–8, 2011. pp. 463-471. ASME. https://doi.org/10.1115/IPACK2011-52073
Download citation file:
3
Views
0
Citations
Related Proceedings Papers
Related Articles
Dynamic Response Optimization of Piezoelectrically Excited Thin Resonant Beams
J. Vib. Acoust (February,2005)
On the Stress Singularities at Multimaterial Interfaces and Related Analogies With Fluid Dynamics and Diffusion
Appl. Mech. Rev (March,2008)
An Analytical Singular Element for Kirchhoff Plate Bending With V-Shaped Notches
J. Appl. Mech (September,2012)
Related Chapters
Reliability of Electronic Packaging
Essentials of Electronic Packaging: A Multidisciplinary Approach
Layer Arrangement Impact on the Electromechanical Performance of a Five-Layer Multifunctional Smart Sandwich Plate
Advanced Multifunctional Lightweight Aerostructures: Design, Development, and Implementation
Mathematical Background
Vibrations of Linear Piezostructures