Abstract

A remarkable amount of data center energy is consumed in eliminating the heat generated by the IT equipment to maintain and ensure safe operating conditions and optimum performance. The installation of Airside Economizers, while very energy efficient, bears the risk of particulate contamination in data centers, hence, deteriorating the reliability of IT equipment. When RH in data centers exceeds the deliquescent relative humidity (DRH) of salts or accumulated particulate matter, it absorbs moisture, becomes wet and subsequently leads to electrical short circuiting because of degraded surface insulation resistance between the closely spaced features on printed circuit boards. Another concern with this type of failure is the absence of evidence that hinders the process of evaluation and rectification. Therefore, it is imperative to develop a practical test method to determine the DRH value of the accumulated particulate matter found on PCBs (Printed Circuit Boards). This research is a first attempt to develop an experimental technique to measure the DRH of dust particles by logging the leakage current versus RH% (Relative Humidity percentage) for the particulate matter dispensed on an interdigitated comb coupon. To validate this methodology, the DRH of pure salts like MgCl2, NH4NO3 and NaCl is determined and their results are then compared with their published values. This methodology was therefore implemented to help lay a modus operandi of establishing the limiting value or an effective relative humidity envelope to be maintained at a real-world data center facility situated in Dallas industrial area for its continuous and reliable operation.

This content is only available via PDF.
You do not currently have access to this content.