Manufacturing process-induced damage to cells is of significant importance in biomaterial direct writing. For safe and reproducible cell direct writing, the process-induced cell damage must be understood in addition to biological property research. The objective of this study is to investigate the cell membrane stability under the external normal pressure. It is performed by studying the dipalmitoylphosphatidylcholine (DPPC) bilayer behavior under different normal pressures using molecular dynamics (MD). It is found that as the normal pressure increases, the thickness of DPPC bilayer decreases and the area of per DPPC molecule increases; and as the normal pressure increases, the rupture force to break the bilayer structure decreases, which can also be explained by the change of free energy difference before and after rupture under different normal pressures. This study serves as the first step towards understanding of the cell damage mechanism in cell direct writing.

This content is only available via PDF.
You do not currently have access to this content.