Electron beam additive manufacturing (EBAM) is one of powder-bed-fusion additive manufacturing processes that are capable of making full density metallic components. EBAM has a great potential in various high-value, small-batch productions in biomedical and aerospace industries. In EBAM, because a build part is immersed in the powder bed, ideally the process would not require support structures for overhang geometry. However, in practice, support structures are indeed needed for an overhang; without it, the overhang area will have defects such as warping, which is due to the complex thermomechanical process in EBAM. In this study, a thermomechanical finite element model has been developed to simulate temperature and stress fields when building a simple overhang in order to examine the root cause of overhang warping. It is found that the poor thermal conductivity of Ti-6Al-4V powder results in higher temperatures, also slower heat dissipation, in an overhang area, in EBAM builds. The retained higher temperatures in the area above the powder substrate result in higher residual stresses in an overhang area, and lower powder porosity may reduce the residual stresses associated with building an overhang.

This content is only available via PDF.
You do not currently have access to this content.