The objective of this paper was to investigate the electrical and rheological behaviors of polypropylene (PP) filled with 1.0, 3.0 and 5.0 wt.-% multi-wall carbon nanotubes (MWCNTs). The flow behavior was analyzed in terms of the melt flow index measured at temperatures relevant for the injection molding process and the flow activation energy was calculated using an Arrhenius type equation. The electrical behavior of PP/MWCNTs composites was examined by DC resistance measurements on injection molded samples.

The experimental results have shown that the incorporation of MWCNTs effectively enhances the electrical conductivity of the injection molded PP/MWCNTs composites. The composites under analysis can be classified as semi-conductors with the conducting network arranged in 4 dimensions, i.e. the critical exponent of the power-law dependence of the conductivity on the wt.-% MWCNTs is 2.37. The increased conductivity is explained by the orientation of the MWCNTs along the melt flow and the increased nanotubes-to-nanotubes contact after the formation of the percolation network.

This content is only available via PDF.
You do not currently have access to this content.