As one of the most important machining methods, common turning has been applied on vast machining fields. Parts in revolving shape can be easily machined using lathe machine. But severe cutting heat is often generated by the contact of tool and work-piece in the procedure of turning. High cutting heat not only affects tool life and processing quality but also leads to low cutting efficiency and high energy consumption.

As to the demands of processing work-piece in large scale like marine shaft, heavy lathe is utilized. Considering the inertia load and the stability of the whole machine, speed of spindle is limited and the cutting efficiency is limited thusly because cutting speed is determined by rotate speed of spindle with fixed tool.

A novel high-speed pulsating turning technology (HSPT) was proposed in this paper. The contact relation between tool and work-piece was modified to be pulsating instead of continuous in common methods. The advantages of HSPT include lower energy consumption, less cutting heat, higher cutting speed compared with common method. Features of energy consumption, contact duration of tools and work-piece, surface roughness, etc. was investigated through theoretical analysis and experiment study, which have verified the advanced performance of HSPT.

This content is only available via PDF.
You do not currently have access to this content.