In bioprinting, biomaterials are deposited layer-by-layer to fabricate structures. Bioprinting has many potential applications in drug screening, tissue engineering, and regenerative medicine. Both animal cells and plant cells can be used to synthesize bioinks. Green bioprinting uses bioinks that have been synthesized using plant cells. Constructs fabricated via green bioprinting contain immobilized plant cells, with these cells arranged at desired locations. The constructs provide scaffolds for cell growth. Printing parameters affecting the growth of cells in green bioprinted constructs include print speed, needle diameter, extrusion temperature, and extrusion pressure. This paper reports a study to examine effects of extrusion pressure on cell growth (measured by cell count) in bioprinted constructs, using bioink containing Chlamydomonas reinhardtii algae cells. Three levels of extrusion pressure were used: 3, 5, and 7 bar. Cell counts in the bioprinted constructs were measured on the third and sixth days after bioprinting. It was found that, as extrusion pressure increased, cell count decreased on both the third and sixth days after bioprinting. Furthermore, the difference in cell counts between the third and the sixth days decreased as extrusion pressure increased. These trends suggest that increasing extrusion pressure during green bioprinting negatively affects cell growth. A possible reason for these trends is physical damage to or death of cells in the bioprinted constructs when extrusion pressure became higher.

This content is only available via PDF.
You do not currently have access to this content.