Abstract

The biocompatibility, mechanical properties and biodegradable nature of Mg alloys have made them attractive for biomedical applications, especially as bone implants. However, one of the main problems that limit the use of Mg alloy for several biomedical applications is their fast corrosion rates inside the body. Coating Mg-based implants is one of the most extensively studied approaches to address the fast corrosion rates of Mg alloys in the physiological environment. Micro arc oxidation (MAO) coating process has shown very promising results towards reducing the corrosion rates of Mg alloys due to the formation of a protective dense, well-adhered and wear-resistant oxide layer on the surface of the Mg alloy. In this study, the feasibility of coating an Mg-Zn-Ca-based alloy with a composite coating made using a micro-arc oxidation coating process and an immersion (dipping process) was investigated. The corrosion properties and surface characteristics of the coated alloy samples are assessed. The created protective composite coating is used to slow the corrosion rates of an Mg-Zn-Ca-based alloy. The developed composite coating resulted in a significant reduction in the corrosion rates. The results of this study show that it is possible to achieve more controlled corrosion rates of Mg-based implants towards patient-specific bone implant applications.

This content is only available via PDF.
You do not currently have access to this content.