Sustained Casing Pressure (SCP) is a well integrity problem and its removal is required. Techniques that involve replacing the fluid inside the annulus with a heavier fluid (kill fluid, KF) to stop gas migration have so far failed due to issues resulting from fluid incompatibility. This study aims to develop an intervention fluid compatible with water-based annular fluids. Based on the theory of buoyant slippage, brominated organic fluids have been produced and tested to assess compatibility and performance with multiple physical models. Results showed that the KF was able to settle down in water-based fluids, build up and exert pressure at the bottom. Experiments also exposed the formation of a mixture zone just above the building-up KF column. Lower injection rates and/or larger nozzle sizes decrease KF dispersion, prevent mixture zone formation and increase KF recovery. Intervention fluids developed in this study may revive the defunct bleed-and-lube (B&L) technique that would dramatically reduce the cost of SCP removal or may be used in an alternative process of continuous displacement that would significantly reduce the time of well intervention. Presented in the paper is also a road map for testing the SCP removal process that would lead to development of this technology.

This content is only available via PDF.
You do not currently have access to this content.