Reliability of blowout preventers (BOP) is central for the safety of both rig workers and the surrounding environment. Analysis of dynamic fluid conditions within the wellbore and BOP can provide quantitative data related to this reliability. In cases of a hard shut in, it is suspected that the sudden closure of rams can cause a water hammer effect, creating pressure vibrations within the wellbore. Additionally, as the blowout preventer reaches a fully closed state, fluid velocity can drastically increase. This results in increased erosion rates within the blowout preventer. To investigate fluid movement and pressure vibrations during a well shut-in, CFD simulations will be conducted. Dynamic meshing techniques within ANSYS® FLUENT can be utilized to simulate closing blowout preventer configurations for both 2-D and 3-D geometries. These simulations would deliver information that could lead to a better understanding of certain performance issues during well shut-ins. Such information includes flow velocity magnitude within the BOP and maximum pressure pulse values within the wellbore.

This content is only available via PDF.
You do not currently have access to this content.