A statistical assessment model for structural integrity of steam generator tubes was proposed using Monte Carlo method. The growth of flaws in steam generator tubes was predicted using statistical approaches. The statistical parameters that represent the characteristics of flaw growth and initiation were derived from in-service inspection (ISI) non-destructive evaluation (NDE) data. Based on the statistical approaches, flaw growth models were proposed and applied to predict distribution of flaw size at the end of cycle (EOC). Because NDE measurement results differ from that of real ones in steam generator tubes, a simple method for predicting the physical number of flaws from periodic in-service inspection data was proposed. The probabilistic flaw growth rate was calculated from the in-service non-destructive inspection data. And the statistical growth of flaw was simulated using the Monte Carlo method. Probabilistic distributions of the flaw size and the probability of burst were obtained from numerously repeated simulations using the proposed assessment model.

This content is only available via PDF.
You do not currently have access to this content.