This paper deals with an isolation device by using friction force. An isolation device decreases response acceleration and external force. Therefore, earthquake damage is reduced. However, an isolation device has a demerit for large relative displacement. The purpose of this research is to decrease the relative displacement by using the friction force. Then, an analytical model in consideration of the friction force is proposed, and a simulation is analyzed with well-known earthquake waves. Consequently, it is thought that optimal friction force exists, and this force decreases both the response acceleration and the relative displacement. This is considered to change with the properties of earthquake waves. Then, it analyzed using the regular random wave. The result, the proportional relation was seen between relative displacement and the optimal coefficient of friction. Then, by changing a friction coefficient according to relative displacement, it is thought that both response acceleration and relative displacement can be reduced. However, it is difficult to change a friction coefficient. So, in this research, reduction of response acceleration and relative displacement is aimed by changing the angle of a friction surface and friction force. Furthermore, an angle is changed in the middle of a slope. It is thought that it becomes possible to reduce response acceleration and relative displacement further. An experimental device is made under the same conditions as the proposed analytical model. The experimental results are compared with the analytical results.

This content is only available via PDF.
You do not currently have access to this content.