The integrity of tube bundles is very important especially when dealing with high-risk applications such as nuclear steam generators. A major issue to system integrity is the flow-induced vibration (FIV). FIV is manifested through several mechanisms including the most severe mechanism; fluidelastic instability (FEI). Tube vibration can be constrained by using tube supports. However, clearances between the tube and their support are required to allow for thermal expansion and for other manufacturing considerations. The clearance between tubes may allow frequent impact and friction between tube and support. This in turn may cause fatigue and wear at support and potential for catastrophic tube failure.

This study aims to investigate the dynamics of loosely supported tube array subjected to cross-flow. The work is performed experimentally in an open-loop wind tunnel to address this issue. A loosely-supported single flexible tube in both triangle and square arrays subjected to cross-flow with a pitch-to-diameter ratio of 1.5 and 1.733, respectively were considered. The effect of the flow approach angle, as well as the support clearance on the tube response, are investigated. In addition, the parameters that affect tube wear such as impact force level are presented.

This content is only available via PDF.
You do not currently have access to this content.