In 2017, the United States Department of Energy (DOE) collaborated with Spanish and Korean organizations to perform a multimodal transportation test to measure shock and vibration loads imparted to used nuclear fuel (UNF) assemblies. This test used real fuel assembly components containing surrogate fuel mass to approximate the response characteristics of real, irradiated used nuclear fuel. Pacific Northwest National Laboratory was part of the test team and used the data collected during this test to validate numerical models needed to predict the response of real used nuclear fuel in other transportation configurations. This paper summarizes the modeling work and identifies lessons learned related to the modeling and analysis methodology. The modeling includes railcar dynamics using the NUCARS software code and explicit dynamic finite element modeling of used nuclear fuel cladding in LS-DYNA. The NUCARS models were validated against railcar dynamics data collected during captive track testing at the Federal Railroad Administration’s Transportation Technology Center in Pueblo, CO. The LS-DYNA models of the fuel cladding were validated against strain gage data collected throughout the test campaign. One of the key results of this work was an assessment of fuel cladding fatigue, and the methods used to calculate fatigue are detailed in this paper. The validated models and analysis methodologies described in this paper will be applied to evaluate future UNF transportation systems.

This content is only available via PDF.
You do not currently have access to this content.