A major challenge in micro unmanned vehicle and, in particular, micro aerial vehicle development stems from the lack of suitable energy storage devices. Demanding voltage and power requirements and stringent size and weight constraints significantly limit the number and type of batteries that can be housed in the micro vehicle structures. As a result, vehicle payloads and endurance times are significantly compromised. One approach to solving this issue would be to develop multifunctional energy storage devices that are capable of supplying energy to the vehicle while bearing some of the vehicle’s structural loads. In doing so, the amount of mass available for payload and/or additional energy storage devices can be increased. Recently, researchers have demonstrated the ability to produce lightweight, flexible batteries and supercapacitors based on carbon nanotubes and graphene. Due to their low mass, small size, and energy storing potential, carbon nanomaterial-based energy storage devices are excellent candidates for use in micro vehicle applications. However, due to the rapid pace in which the nanoscience field is advancing, there is limited information on how different materials, processing techniques, and device architectures influence the electrical properties of the device under investigation. In this study, we will systematically review these variables in an effort to discover how the materials and structure of the electrode and separator might be tailored to achieve both the desired material properties and the highest energy density per device weight and volume.
Skip Nav Destination
ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
September 18–21, 2011
Scottsdale, Arizona, USA
Conference Sponsors:
- Aerospace Division
ISBN:
978-0-7918-5471-6
PROCEEDINGS PAPER
Electrical Properties of Carbon Nanomaterial-Based Structural-Energy Storage Devices
Monica Rivera,
Monica Rivera
Motile Robotics, Inc., Joppa, MD
Search for other works by this author on:
Daniel P. Cole,
Daniel P. Cole
Motile Robotics, Inc., Joppa, MD
Search for other works by this author on:
Mark Bundy
Mark Bundy
U.S. Army Research Laboratory, Aberdeen Proving Ground, MD
Search for other works by this author on:
Monica Rivera
Motile Robotics, Inc., Joppa, MD
Daniel P. Cole
Motile Robotics, Inc., Joppa, MD
Mark Bundy
U.S. Army Research Laboratory, Aberdeen Proving Ground, MD
Paper No:
SMASIS2011-5169, pp. 181-188; 8 pages
Published Online:
February 7, 2012
Citation
Rivera, M, Cole, DP, & Bundy, M. "Electrical Properties of Carbon Nanomaterial-Based Structural-Energy Storage Devices." Proceedings of the ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Volume 1. Scottsdale, Arizona, USA. September 18–21, 2011. pp. 181-188. ASME. https://doi.org/10.1115/SMASIS2011-5169
Download citation file:
7
Views
0
Citations
Related Proceedings Papers
Related Articles
Ultrathin and Porous NiCo 2 O 4 Nanosheet-Based Three-Dimensional Hierarchical Electrode Materials for High-Performance Asymmetric Supercapacitor
J. Electrochem. En. Conv. Stor (February,2022)
Influence of Carbon Nanoparticles Additives on Nanosilver Joints in LTJT Technology
J. Electron. Packag (September,2021)
Modelling Ampacity in Advanced Electrical Conductors
J. Heat Transfer (January,0001)
Related Chapters
Layer Arrangement Impact on the Electromechanical Performance of a Five-Layer Multifunctional Smart Sandwich Plate
Advanced Multifunctional Lightweight Aerostructures: Design, Development, and Implementation
In Situ Self-Assembly of Mild Chemical Reduction Graphene for Three-Dimensional Architectures
International Conference on Computer and Electrical Engineering 4th (ICCEE 2011)
Novel and Efficient Mathematical and Computational Methods for the Analysis and Architecting of Ultralight Cellular Materials and their Macrostructural Responses
Advances in Computers and Information in Engineering Research, Volume 2