A detailed tribological characterization of low-energy, nitrogen implanted V5 at. %Ti alloy is presented. Samples were nitrogen-implanted at an accelerating voltage of 1.2 kV and 1 mA/cm2, up to a dose of 1E19 ions/cm2. The tribological properties of the alloys: microhardness, friction coefficient and wear resistance, have improved after ion implantation and this improvement increases as the implantation temperature increases. The microstructure of the alloys were analysed by transmission electron microscopy. A direct correlation between structural modifications of the nitrogen implanted layer and the improvement in their tribological properties is obtained. For samples implanted at 848 K a nanocomposite layer where the reinforcement particles are TiN precipitates forms. TiN precipitation appears as the responsible of the improvement in the tribological properties.

This content is only available via PDF.
You do not currently have access to this content.