Abstract

Reliable experimental data on local heat-transfer coefficients for supersonic flow of air in a round tube are reanalyzed in detail with the aid of an approximate two-dimensional flow model. The results are compared with similar results based on a one-dimensional flow model and with the theoretical predictions for supersonic flow over a flat plate and for flow in the entrance region of a tube when a laminar boundary layer is present. The two-dimensional flow model yields a better understanding of the phenomena which occur for diabatic supersonic flow of air in a round tube than that obtained with the aid of the one-dimensional flow model. The two-dimensional flow model shows that the core Mach number is nearly constant along the length of test section for a range of values of the inlet diameter Reynolds number. For a laminar boundary layer the values of the local Stanton number agree within a few per cent with the theoretical values for plate flow at the largest values of the inlet diameter Reynolds number.

This content is only available via PDF.
You do not currently have access to this content.