A study of the mechanics and failure modes of delamination initiated from a surface flaw in angle-ply fiber-reinforced composites is presented. The analysis employs a hybrid-stress finite-element method including a crack-tip singular element with its field variables expressed by Muskhelishvili’s complex stress functions. Solutions are obtained for the delaminated composites with various laminate parameters. The results elucidate unique and important characteristics of delamination crack-tip response and interlaminar stress transfer mechanisms. Of particular interest are the mixed-mode stress-intensity factors associated with the delamination crack. The influence of ply orientation on KI and KII and their effects on subsequent crack extension are discussed.

This content is only available via PDF.
You do not currently have access to this content.