The orthonormal version of the Method of Integral Relations (MIR) was applied to solve for a two-dimensional incompressible turbulent boundary layer. The flow was assumed to be nonseparating. Flows with favorable, unfavorable, and zero pressure gradient were considered, and comparisons made with available experimental data. In general, the method predicted very well the experimental results for flows with favorable or zero pressure gradient; for flows with unfavorable pressure gradient, it predicted the experimental data well only up to a certain distance from the initial station. This result is due to the flow not being in equilibrium beyond that distance. Finally, the scheme was shown to be efficient in obtaining numerical solutions.

This content is only available via PDF.
You do not currently have access to this content.