A one-dimensional gas-flow drives a wedge-shaped fracture into a linearly elastic, impermeable half space which is in uniform compression, σ, at infinity. Under a constant driving pressure, p0, the fracture/flow system accelerates through a sequence of three self-similar asymptotic regimes (laminar, turbulent, inviscid) in which the fracture grows like an elementary function of time (exponential, near-unity power, and linear, respectively). In each regime, the transport equations are reducible under a separation-of-variables transformation. The integro-differential equations which describe the viscous flows are solved by iterative shooting methods, using expansion techniques to accomodate a zero-pressure singularity at the leading edge of the flow. These numerical results are complemented by an asymptotic analysis for large pressure ratio (N = p0 → ∞) which exploits the disparity between the fracture length and penetration length of the flow. Since the seepage losses to a surrounding porous medium are shown to be negligable in the late-time long-fracture limit, the results have application to geologic problems such as: containment evaluation of underground nuclear tests, stimulation of oil and gas wells, and permeability enhancement prior to in situ combustion processes.

This content is only available via PDF.
You do not currently have access to this content.